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In recent years, there has been considerable interest within

the tracking community in an approach to data association based

on the m-best two-dimensional (2-D) assignment algorithm. Much

of the interest has been spurred by its ability to provide various

efficient data association solutions, including joint probabilistic

data association (JPDA) and multiple hypothesis tracking (MHT).

The focus of this work is to describe several recent

improvements to the m-best 2-D assignment algorithm. One

improvement is to utilize a nonintrusive 2-D assignment

algorithm switching mechanism, based on a problem sparsity

threshold. Dynamic switching between two different 2-D

assignment algorithms, highly suited for sparse and dense

problems, respectively, enables more efficient solutions to

the numerous 2-D assignment problems generated in the

m-best 2-D assignment framework. Another improvement is to

utilize a multilevel parallelization enabling many independent

and highly parallelizable tasks to be executed concurrently,

including 1) solving the multiple 2-D assignment problems via a

parallelization of the m-best partitioning task, and 2) calculating

the numerous gating tests, state estimates, covariance calculations,

and likelihood function evaluations (used as cost coefficients in

the 2-D assignment problem) via a parallelization of the data

association interface task. Using both simulated data and an

air traffic surveillance (ATS) problem based on data from two

Federal Aviation Administration (FAA) air traffic control radars,

we demonstrate that efficient solutions to the data association

problem are obtainable using our improvements in the m-best 2-D

assignment algorithm.
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I. INTRODUCTION

A. Motivation

The problem of data association, namely,

partitioning measurements across lists (e.g., sensor

scans) into tracks and false alarms so that accurate

estimates of true tracks can be recovered, has been

extensively studied for many years. For a given

multitarget tracking problem, the decision as to which

algorithm to employ in solving the data association

problem is typically motivated by several factors,

including: 1) tracking accuracy requirements (e.g.,

rms error in position and velocity, track purity,

track continuity, etc.), often determined by the

characteristics of the multitarget scenario in the

surveillance environment (e.g., target density), and

2) computational requirements, often determined

by choices made with respect to 1) above and the

computational resources available. Although in no

way the only one, the sparsity (or density) of the

surveillance environment is one very important

consideration. For example, some characteristics

that determine the sparsity/density of a surveillance

environment include clutter, noise, and target

density (e.g., urban environments typically contain

denser environments in terms of ground targets

than nonurban environments). Moreover, air traffic

surveillance (ATS) applications typically deal with

sparse air target environments, whereas military

ground target tracking applications often times must

deal with dense environments.

For sparse environments, multiple hypothesis

tracking (MHT), the multidimensional S-D (S ¸ 3)1
assignment, and joint probabilistic data association

(JPDA) are typically not necessary for data association

because little is gained in accuracy at the expense of

large computational overheads associated with these

methods. On the other hand, a single scan processing

approach to data association (i.e., 2-D assignment)

is often practical and has been shown to be fairly

efficient and accurate. For dense environments,

however, the conventional wisdom is that the single

scan processing approach to data association does

not provide reliable performance [12, 22]. The

finality of 2-D assignment decisions may, and

often does, lead to loss of track and improperly

partitioned measurements into tracks and false alarms.

Alternatively, the more complex statistical estimation

techniques, such as MHT and S-D assignment, have
proven to be fairly accurate and reliable approaches

to data association in dense environments. Postponing

final decisions pertaining to difficult data association

situations may be the prudent thing to do until more

information, such as the next scan(s) of data, are

received.

1For simplicity, unless otherwise stated, assume (S ¸ 3) in all
references to S-D.
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In recent years, there has been considerable

interest in an efficient and robust approach to data

association based on an m-best 2-D assignment
formulation [7—10, 19, 31]. With an appropriate

modification of a cost matrix and by solving a

series of modified copies of the initial problem, an

algorithm, first due to Murty [18], can be used to

find the m-best (ranked) solutions to not only the 2-D
assignment data association problem, but, in general,

to many other classical optimization problems as

well. Determining m-best solutions (as opposed to
only the best one) becomes especially important for

assignment-based approaches to data association since

the hard irrevocable decisions that such approaches
make can be mitigated.

B. Related Research

The problem of data association has been

extensively studied for many years in multitarget

tracking problems, with a wealth of research

identifying numerous well-known approaches

proposed over the years, e.g., (in order of decreasing

complexity) MHT [4, 15, 30], S-D assignment [11,
12, 20—24], JPDA [4], and numerous 2-D assignment

algorithms [1, 2, 5, 13, 14, 25, 32]. The MHT

algorithm evaluates the probabilities of feasible

joint association hypotheses (within a time window

and/or a pruned set to limit its otherwise exploding

requirements).2 The JPDA algorithm averages over

all the hypotheses from the latest scan (a window of

size 1), whereas the 2-D assignment picks the best

(optimal) set of assignments from the latest scan.

S-D assignment is a discrete mathematical
optimization formulation of the data association

problem that systematically resembles an MHT

within a window of length (S¡ 1). However, the
main challenge to overcome in the S-D assignment
problem is that of solving the ensuing NP-hard

multidimensional assignment problem. In particular,

an algorithm that determines the optimal solution
is not only arduous, but also, impractical for even

fairly small-sized problems; however, satisfactory

tracking and computational performance can be

realized utilizing existing S-D assignment algorithms
that provide good suboptimal solutions, of quantifiable
accuracy, and in pseudopolynomial time. Interested

readers can find a wealth of material on the S-D
assignment approaches to tracking in [11, 12, 20—24].

For 2-D assignment algorithms, although the best

algorithms proposed over the years have polynomial

time complexity, i.e., O(N3) in N tracks, they often

have vastly different performances. For example,

Pattipati, et al. [20] investigated the computational

2We are assuming Reid’s classical measurement-oriented MHT

approach [30] and not a suboptimal, yet computationally practical,

track-oriented approach as described in [15].

efficiency of three well-known assignment algorithms,

namely, a generalized auction algorithm, a relaxation

algorithm for network flows, and the signature

method. Based on extensive experimental results,

the generalized auction algorithm outperformed

the other two methods by a factor of 4¡ 5. For
sparse and dense problems, extensive research

[5, 6, 9, 13, 14, 20, 32] shows: 1) the auction

algorithm [5] is highly-suited and one of the most

efficient algorithms for sparse problems, 2) the

Jonker—Volgenant—Castanon (JVC) algorithm [13, 14]

is highly suited and efficient for dense problems, and

3) the auction algorithm significantly outperforms

the JVC algorithm for sparse problems, and vice

versa for dense problems. Also, Jonker and Volgenant

[14], Drummond, et al. [13], and Cox, et al. [9] each

empirically showed the JVC algorithm to be uniformly

faster than numerous 2-D assignment algorithms (not

including the auction algorithm) for both sparse and

dense problems. Tsaknakis [32], however, showed the

auction algorithm significantly outperforming the JVC

algorithm for an array of sparse problems (as we also

show in this work).

Murty [18] was the first to recognize the utility

of calculating not only the best (optimal) solution,

but also the 2nd, 3rd, and, in general, the mth best
solution to the 2-D assignment problem and various

other classical optimization problems. Miller, et al.

[16] proposed several optimizations to Murty’s

m-best 2-D assignment algorithm that substantially

reduced its complexity from O(mn4) to O(mn3). For
applications to multitarget tracking, Miller [16] and

Cox [8, 9] were the first to recognize the utility of

specifically utilizing Murty’s m-best 2-D assignment
algorithm for data association. However, the manner

in which the m-best 2-D solutions are processed
allows for several data association approaches to be

approximated [7—10, 19, 31]. Recent research has

suggested that efficient MHT and JPDA solutions can

be obtained when using an m-best 2-D assignment
formulation of the data association problem [8—10].

Contrary to the claims in [8—10], because it lacks

the depth in lists (sensor scans) processed, i.e., 1

list processed at-a-time, an m-best 2-D is at best a
special-case (1-scan) approximation of MHT with

very limited utility and benefit. However, a (1-scan)

JPDA can be approximated using an m-best 2-D
assignment algorithm. Alternatively, an m-best S-D, as
proposed in a companion paper [28], processes over S
lists and is, in the authors’ view, the correct and most

efficient way to approximate an (S¡1)-scan MHT in
the assignment framework. Moreover, an m-best 2-D
is subsumed by an m-best S-D assignment algorithm.

C. Scope and Organization of Paper

However promising it may be for data association,

the m-best 2-D assignment algorithm still has
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computational complexity issues to contend with.

For example, in generating a JPDA or even an

approximated MHT solution, at each scan, the m-best
descendents for each of the existing hypotheses

derived from the previous scan need to be determined,

not simply the m-best 2-D assignment solutions
to a single problem. Hence, even though it has

polynomial time complexity across two scans, the

complexity (in space and time) of the m-best 2-D
assignment algorithm is exponential in the number

of scans S processed over time, i.e., O(mSN3),
assuming N tracks and m hypotheses. To mitigate its
computational complexity, several improvements to

the m-best 2-D assignment algorithm can be pursued,

including 1) suboptimal solutions, where a reasonable

approximation to MHT can be obtained by retaining

at most the m-best 2-D assignments (hypotheses)
at each scan, pruning the remaining hypotheses

which, one hopes, have negligible effect due to very

small probabilities, 2) parallelization, where many

independent and highly parallelizable tasks can be

executed concurrently, and 3) efficient solution to the

numerous 2-D assignment problems generated in the

m-best 2-D assignment framework. The scope of the
present effort pertains to 2 and 3.

We begin by providing in Section II a general

overview of the various aspects of the data association

algorithm developed in this work (termed m-best-2-D
in the sequel). In particular, we discuss: 1) the

2-D assignment problem, 2) the m-best 2-D
assignment algorithm, including improvements

by Miller, et al. [16], and 3) a discussion of how

the m-best 2-D assignment algorithm can provide

solutions to various data association approaches. In

Section III, we describe our dynamically adaptive

2-D assignment algorithm switching scheme that

we incorporated into the m-best 2-D assignment
approach, enabling a much more efficient solution

to the data association problem, especially in

dynamic environments. In Section IV, we present a

multilevel parallelization of the m-best partitioning
task and the data association interface task. Using

both simulated data and an ATS problem based

on data from two FAA air traffic control radars, in

Section V, we provide results demonstrating that more

efficient solutions to the data association problem

are possible when our proposed improvements

are incorporated into the m-best 2-D assignment
framework. In Section VI, we provide concluding

remarks and future directions for this and related

research.

II. DATA ASSOCIATION

In general, data association is the decision process

of linking measurements (from successive scans) of

a common origin (i.e., a target or false alarm) such

that each measurement is associated with at most

one origin. In multitarget tracking, a probabilistic

formulation is given to measurement-to-track

data association. Consequently, the assignment of

measurements to tracks and the update of tracks

themselves may be done in a variety of ways,

each having specific probabilistic interpretation.

In this section, after providing an overview of the

classical 2-D assignment problem and the m-best
2-D assignment algorithm, we discuss how various

data association solutions can be obtained using this

algorithm.

A. 2-D Assignment Problem Formulation

In m-best 2-D, we cast the 2-D assignment
problem as follows. M measurements from the

latest scan are to be assigned to the N most likely

tracks from the previous scans using a global cost

minimization function [3, 4] (typically based on a

likelihood function). Note that N 6=M is typically the

case. Specifically, let y = 0, : : : ,N denote a particular

track from the set of existing tracks (including

a dummy track y = 0), and z = 0, : : : ,M denote a

particular measurement from the latest set (scan)

of measurements (including a dummy measurement
z = 0). By using dummy tracks and measurements,
it is possible to handle all data association

contingencies, namely, false alarms, newly initiated

tracks, track maintenance, track termination,

and the case where the track and measurement

list sizes are unequal (i.e., rectangular 2-D

assignment problems). Define the binary

assignment variable

Âyz =

½
1 if measurement z is assigned to track y

0 otherwise

(1)

Note that Ây0 = 1 implies that track y is unassociated
and has missed a detection in the latest scan.

Furthermore, Â0z = 1 implies that measurement
z is unassociated, that is, not assigned to any of
the N previously established tracks, but, instead,

assigned to the dummy track (false alarm or new

track initiation). Since measurement errors within a

scan are independent of each other, maximizing the

negative log-likelihood ratio, consisting of the joint

probability density function (pdf) and probability

[3, 4] of measurements given their origins and the

corresponding detection events, over the set of feasible

assignments can be cast into the following 2-D

assignment problem:

min

NX

y=0

MX

z=0

cyzÂyz (2)
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subject to

MX

z=0

Âyz = 1 y = 1, : : : ,N

NX

y=0

Âyz = 1 z = 1, : : : ,M

(3)

where the cost of assigning measurement z to track y
is

cyz =

8
>><

>>:

0 if y = 0 or z = 0

¡ log
µ
¤(y,z)

¤(0,z)

¶
if ¡ log(¢)< 0

1 otherwise

: (4)

The numerator in the above ¡ log(¢) expression (see
[25, 27] for the derivation), based on a likelihood

function calculation ¤(¢) from the state estimator, is

the likelihood that measurement z at scan S originated
from track y, and the denominator is the likelihood
that measurement z corresponds to none of the
existing tracks (i.e., a false alarm). The likelihood

of false alarms, i.e., ¤(0,z), is assumed uniformly
probable over the sensor’s field of view [4].

B. Review of m-Best 2-D Assignment Algorithm

In this section, because it serves as the foundation

of m-best 2-D, we provide an overview of the m-best
2-D assignment algorithm. Suppose we express the

2-D assignment problem, say P, with N tracks and

M measurements, as a weighted bipartite graph,

represented by a list of triplets hy,z,cyzi, where each
y represents a hypothesized track, each z represents
a measurement from the current scan, and cyz, the
cost of assigning measurement z to track y, is based
on the cost coefficient calculation as specified in (4).

A feasible solution, or assignment, say ai, is a set of
triplets in which each y and z appear exactly once
(except for dummy tracks and dummy measurements

which may appear multiple times), i.e.,

ai = fhy,z,cyzig[ fh0,dz,0ig[ fhdy ,0,0ig (5)

where

1· y, dy ·N, 1· z, dz ·M, y 6= dy, z 6= dz
(6)

fyg[ fdyg= f1, : : : ,Ng, fzg[fdzg= f1, : : : ,Mg:

The feasible solution space A can then be expressed as

A=
[
faig, faig 6= fajg, i 6= j (7)

where the size of the feasible solution space (i.e., the

number of data association assignments) as derived in

[31] is

jAj=
minfN,MgX

j=0

M!N!

j! (M ¡ j)! (N ¡ j)! : (8)

The cost (or likelihood) of an assignment, denoted by

C(ai), can be found by summing the individual costs
(negative log-likelihoods) in the triplets, i.e.,

C(ai) =
X

hy,z,cyzi2ai

cyz: (9)

Determining the single best (most likely, optimal)

assignment A¤(1) to P then is a matter of determining
the assignment that minimizes this sum, which can

be solved using any number of well-known 2-D

assignment algorithms (e.g., auction, JVC). The

m-best 2-D assignments to P, i.e., A¤(1), : : : ,A
¤
(m), are

the m assignments ai 2 A with the m least costs, i.e.,

A¤(1) = argmin
ai2A

fC(ai)g (10)

A¤(2) = arg min
ai2AnA¤(1)

fC(ai)g (11)

...

A¤(m) = arg min
ai2AnA¤(k)
k=1,:::,m¡1

fC(ai)g: (12)

To determine the m-best 2-D assignments to P, we
can use Murty’s algorithm to rank, in polynomial

time, the 2-D assignment problem solutions in order

of increasing cost. Specifically, Murty’s algorithm

solves a series of 2-D assignment problems where

the original problem P is partitioned into a number
of subproblems, say Pn, n= 1, : : : ,N, having solution
spaces An, An ½ A. The partitioning task in Murty’s
algorithm maintains the following two constraints:

N[

n=1

An = A¡A¤(1) (13)

Aj \Ak =Ø, for j,k = 1, : : : ,N, j 6= k:
(14)

To create subproblem P1, we first copy P to P1,
and then remove from P1 the 1st triplet in the best
(optimal) assignment A¤(1) of P, i.e., we remove
hy1,z1,cy1z1i 2 A

¤
(1) from P1. Hence, subproblem P1 is P

less hy1,z1,cy1z1i, which implies that no solution to P1
will ever contain this 1st triplet in its solution space,

i.e.,

A1 = fai 2 A : hy1,z1,cy1z1i =2 aig: (15)

In general, in creating subproblem Pn, 2· n·N,
we first copy P to Pn, and then do the following
two things. First, we remove from Pn the nth triplet
in the best assignment A¤(1) of P, i.e., we remove
hyn,zn,cynzni 2 A

¤
(1) from Pn. This implies that no

solution to Pn will ever contain this nth triplet in its
solution space. Second, we force the 1st, : : : , (n¡ 1)st
triplets, i.e., hyj ,zj ,cyjzj i 2 A

¤
(1), j = 1, : : : , (n¡ 1), in

the best assignment of P to be in all solutions to Pn.
We enforce this by removing in Pn all triplets incident
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to yj and zj in P, except for the triplets hyj ,zj ,cyjzj i
themselves, which implies that every solution to Pn
will contain the 1st, : : : , (n¡ 1)st triplets in its solution
space. Hence, for j = 1, : : : , (n¡ 1), subproblem Pn is
P less hyn,zn,cynzni, less all triplets hyj ,k,cyjki 2 P,
0· k ·M, and hl,zj ,clzj i 2 P, 0· l ·N, except for
the triplets hyj ,zj ,cyjzj i. Thus,

An = fai 2 A : hyj ,zj ,cyjzj i 2 ai, hyn,zn,cynzni,

hyj ,k,cyjki, hl,zj ,clzj i =2 ai,

j = 1, : : : , (n¡1), 0· k ·M, 0· l ·Ng:
(16)

Note that solution spaces An for subproblems Pn, n=
1, : : : ,N, are disjoint and their union will be exactly
the solution space to P less its optimal assignment
(i.e., A¡A¤(1)).
After partitioning P according to its optimal

assignment A¤(1), we solve each subproblem Pn, 1·
n·N, and pair it together with its optimal solution
A¤n, and place each pairing (Pn,A

¤
n) on a queue, say Q.

The 2nd best assignment to P, say A¤(2), is the optimal
assignment A¤n corresponding to subproblem Pn on
the queue Q having minimum cost (or maximum

likelihood), i.e.,

A¤(2) = argmin
A¤n2Q

fC(A¤n)g (17)

which is equivalent to (11). To find the 3rd best

assignment in P, we simply replace subproblem Pn
corresponding to the 2nd best assignment A¤(2) by its
partitioning in the queue Q. The optimal assignment
A¤(3) corresponding to subproblem Pk, 1· k · 2N, in
the queue Q that has minimum cost after partitioning

Pn would then be the 3rd best assignment to P, and so
on.

In the m-best 2-D method, since we perform
one partitioning task for each of the m-best 2-D
assignments determined, in the worst case, each

partitioning creates N new problems. This creates

up to O(mN) 2-D assignment problems to be solved
and insertions of (problem, solution) pairings on the

queue Q. Solving each 2-D assignment problem has

worst case complexity O(N3), and each insertion step
has worst case complexity O(mN). Hence, the worst
case complexity of m-best 2-D is O(mN(N3 +mN)) =
O(mN4).

C. Improvements to m-Best 2-D

Miller, et al. [16] proposed three optimizations to

improve Murty’s method, which can be summarized

as follows. 1) During the partitioning process, have

the created subproblems inherit dual variables and

partial solutions from the initial problem. 2) After the

partitioning process, sort the subproblems by lower

cost bounds before solving the assignment problems.

3) Partition in an order based on lower cost bounds.

The first optimization, inheriting dual variables and

partial solutions during partitioning, is a well-known

optimization technique which reduces the worst

case complexity of Murty’s algorithm from O(mN4)
to O(mN3). The other two optimizations do not
improve the worst case complexity, but are practical

because they improve the average case complexity

substantially. For example, when a problem is

partitioned, lower cost bounds on the cost of the

best solutions to its subproblems can be determined.

These bounds can then be used to: 1) avoid solving

subproblems that are unlikely to produce the next

best assignment, and 2) change the order in which the

triplets are used for partitioning, thereby increasing

the probability that smaller problems are more likely

to contain the best solutions. These optimziations

have been incorporated into m-best 2-D, and we refer
interested readers to [16] for more details.

D. Various Data Association Approaches via m-Best
2-D

In this section, we provide a discussion (although

in no way meant to be comprehensive) of how to

use m-best 2-D to get solutions to various data
association approaches. In general, in addition to

requiring an appropriate strategy for track initiation

and maintenance, the key differentiator of various

data association approaches using the m-best 2-D
assignment algorithm is in the proper formulation of

assignment (hypothesis) costs.

In terms of track initiation, new tracks could

be created based on the set of unassociated

measurements resulting from solving the 2-D

assignment problems. Initializing (forming) tracks

based on a single measurement requires a priori
velocity estimates/covariances or uncertainty regions.

For a description of how an m-best 2-D
assignment algorithm can be cast in such a way as

to provide solutions to an MHT approach, see Cox,

et al. [8, 9] and/or Danchick, et al. [10]. While they

describe the m-best 2-D assignment as a solution
to MHT with a window of 1 scan, the m-best S-D
assignment can provide the solution to an MHT with

a window of S¡1 scans. Similarly, the m-best 2-D
assignment algorithm can also provide the JPDA

solution by acting as a preprocessor to a JPDA filter

(i.e., joint event generator/extractor) for any number of

measurements and targets [4, 31, 34].

In general, for MHT and JPDA solutions, the

problem at hand is the efficient (nonenumerative)

generation/extraction of the feasible joint events

(assignments) of measurements and tracks for each

hypothesis at a particular scan and the derivation

of their conditional probabilities. In the m-best 2-D
assignment framework, for a particular hypothesis,

the m feasible joint events correspond to the m-best
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2-D assignments generated, i.e., A¤(1), : : : ,A
¤
(m). For a

particular track, say y, the m feasible joint events
determine the measurements assigned to it via the

following triplets: hy,zij ,cyzij i, 0· ij ·M, j = 1, : : : ,m
(note that it is not necessarily the case that zij 6=
zik , 0· ik ·M, j 6= k). The normalized cost of a
feasible joint association is the probability of the

corresponding feasible joint event. The marginal

probability that a track is associated to the same

measurement needed in the JPDA is determined

by summing the joint probabilities of the feasible

events in which this pair appears. The normalization

is such that the sum of the joint probabilities over

all possible feasible events is unity. However, the

normalization term is constant and is of importance

only when absolute values of probabilities matter.

Since finding the global m-best 2-D assignments
(hypotheses) requires only relative values, we can

ignore the normalization constant, which implies

an enumeration of all feasible joint events is not

necessary. The enumeration could be limited to the

m-best feasible joint events.
Getting 2-D assignment (single scan processing)

solutions using the m-best 2-D assignment algorithm
is rather trivial, i.e., simply set m= 1. In this case, (4)
provides the association cost (based on the negative

log-likelihood ratio), and the associated measurements

in the 2-D assignment problem are used to extend

existing tracks, i.e., the corresponding track state

vector is updated with the new measurement via

a standard update equation in a state estimator.

Tracks that go unassociated (i.e., not assigned a

measurement) in the 2-D assignment problem for a

specified threshold of consecutive scans are terminated

(dropped). Getting m-best S-D assignment solutions
using the m-best 2-D assignment algorithm is not a

straightforward extension of the 2-D case, and is the

subject of a forthcoming paper.

How the set of tracks get combined/pruned based

on the m-best 2-D assignment solutions can also be
done in numerous ways. For example, one option

is to never keep more than m track branches after
solving the data association problem based on the

m-best 2-D assignment solutions, i.e., keep only
the m-best solutions at all times. Another option
is to never keep more than some specified number

of track branches after solving the data association

problem, where the specified number can be based on

the likelihood scores of the various track branches.

Yet another option is to let the track branches grow

(exponentially) by m for each scan of measurements
processed, and to invoke pruning mechanisms after

solving the data association problem to limit its

otherwise exploding growth. Which approach is best

is not the focus of the present work and is the subject

of a forthcoming paper.

III. DYNAMICALLY ADAPTIVE m-BEST 2-D
ASSIGNMENT ALGORITHM SWITCHING

In this and the next section, we describe a

nonintrusive dynamic 2-D assignment algorithm

switching mechanism, based on a problem sparsity

threshold and multilevel parallelization. When

incorporated into the m-best 2-D assignment
algorithm, these improvements enable the data

association problem to be solved much more

efficiently than the “best” m-best 2-D assignment
algorithm found in the literature (see Cox, et al. [9]

and Miller [16]), especially in a dynamic environment.

Recall that the m-best 2-D assignment algorithm
is independent of the 2-D assignment algorithm used

for solving the numerous 2-D assignment problems

generated during the partitioning task. Also recall

that extensive research [5, 6, 13, 14, 20] shows the

auction algorithm to be highly suited and one of the

most efficient algorithms for sparse problems, and

vice versa for the JVC algorithm and dense problems.

Furthermore, Tsaknakis [32] has shown (as well

as we do in this paper) that the auction algorithm

can significantly outperform the JVC algorithm for

sparse problems, and vice versa for dense problems.

Hence, providing there is little overhead incurred,

it would seem logical that switching between the

two 2-D assignment algorithms for sparse and dense

problems, respectively, whichever is applicable at

the time, would enable more efficient solutions to

the data association problem, especially in dynamic

environments. Consequently, we developed an

improvement to the m-best 2-D assignment algorithm
by utilizing a nonintrusive 2-D assignment algorithm

switching mechanism, based on a problem sparsity

threshold parameter, i.e.,

Sparsity =
jL(S)j
jC(S)j (18)

where jC(S)j=NM denotes the maximum size of

the set of candidate associations, and jL(S)j denotes
those associations participating in the 2-D assignment

problem.

Specifically, the task of interfacing with the

2-D assignment problem in m-best 2-D requires
the creation of several data structures (e.g., vectors

corresponding to the forward star graph representation

of the 2-D assignment problem) to hold only the

relevant information required by the 2-D assignment

algorithms. The forward star graph representation is

well known and commonly used for graph problems

that are considered sparse and/or irregular (e.g.,

rectangular 2-D assignment problems). Note that the

obvious unassignments (i.e., track having an empty
gate and measurement not falling within a track

gate) were preprocessed out and do not participate

in the 2-D assignment problem. This was handled

consistently in both the auction and JVC algorithms
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Fig. 1. Shared-memory parallelization of data association interface task in m-best 2-D.

in both stand-alone mode comparisons and when used

within m-best 2-D. Similarly, the obvious assignments
(i.e., track having a single measurement falling within

its gate) were not preprocessed out and do participate

in the 2-D assignment problem. This also was handled

consistently in both the auction and JVC algorithms

in both stand alone mode comparisons and when used

within m-best 2-D.
Once the 2-D assignment problem data structures

were created, the sparsity of the problem can be

determined. Since the interface to the auction

algorithm and the JVC algorithm is nearly identical,

m-best 2-D can use the value of Sparsity to
dynamically switch between these two algorithms

with negligible overhead incurred; consequently,

the switching mechanism is nonintrusive. Dynamic

switching enables more efficient solutions to the 2-D

assignment problem, and, when numerous problems

require solution due to the partitioning task, this

greater efficiency is compounded than when using a

single static 2-D assignment algorithm.

IV. MULTILEVEL PARALLELIZATION

To mitigate the computational complexity issues,

we also developed a multilevel parallelization

in m-best 2-D targeted for shared-memory
multiprocessor systems. A multilevel parallelization

enables many independent and highly parallelizable

tasks to be executed concurrently, including:

1) multiple 2-D assignment problems via a

parallelization of the partitioning task, and 2) the

numerous gating tests, state estimates, covariance

calculations, and likelihood function evaluations (used

as cost coefficients in the 2-D assignment problem)

via a parallelization of the data association interface

task.

A. Data Association Interface Task Parallelization

Even though it has been a historical and widely

held belief that the most computationally intensive

aspect of multitarget tracking has been the task of

solving the data association problem, as we have

shown in previous research [26, 27], contrary to

conventional wisdom, the interface to the data
association problem also comprises a significant

fraction of the workload. Consequently, as illustrated

in Fig. 1, in m-best 2-D, like in previous work,
we developed a coarse-grained shared-memory

parallelization of the interface to the data association

problem. In particular, based on the supervisor/worker

model, a supervisor thread3 initially forks a specified
number of worker threads, say p, to process the set
of candidate associations, i.e., C(k). Once forked, the
supervisor awaits processing of C(k) to be completed
by the p worker threads via a join operation. Worker
threads, asynchronously and in parallel, process

a specified number of candidate associations per

serialized critical section access across mutually

exclusive track and measurement data. The processing

of a candidate association primarily consists of

computing the numerous independent gating tests
(which consists of a coarse maximum velocity gating

test and a fine Kalman filter elliptical gating test [26,

27]), state estimates, covariance calculations, and

likelihood function evaluations used as assignment

cost coefficients in the 2-D assignment problem.

Since the processing cost corresponding to each

candidate association is not uniform (depends on the

results of gating), dynamic scheduling of candidate

associations across threads is employed. In this

way, because candidate associations are dynamically

scheduled, maximum load balancing is achieved [26].

Upon processing of C(k) by the worker threads, the
supervisor can then solve the data association problem

via the auction or JVC algorithm.

B. m-Best 2-D Partitioning Task Parallelization

The shared-memory parallelization of the

partitioning task is also coarse-grained and much like

the supervisor/worker model previously described

(see Fig. 2). Recall that after determining the optimal

solution to an initial 2-D assignment problem,

3Note that a thread refers to a light weight process using the

Solaris multithreading parallel processing interface [17, 29] (see

Section VA).
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Fig. 2. Shared-memory parallelization of partitioning task in m-best 2-D.

denoted as (P,A¤(1)), the partitioning task consists
of creating N subproblems, say P1, : : : ,PN (where
N is the assumed track list size), and determining

their optimal solutions, say A¤1, : : : ,A
¤
N , respectively.

Since each of the N subproblems are independent

of one another, they can be processed (i.e., created

and solved) in parallel. The supervisor thread creates

a specified number of worker threads, say p·N,
to process the N subproblems P1, : : : ,PN , and awaits
processing of the N subproblems to be completed

before determining the next best assignment. Each

worker thread, asynchronously and in parallel, creates

its respective subproblem(s) and determines the (their)

optimal solution(s) via the auction or JVC algorithm;

collectively the worker threads generate (Pn,A
¤
n),

1· n·N. Since the processing cost corresponding
to each subproblem Pn is not uniform (depends on the

number of triplets that are fixed and/or removed based

on the partitioning algorithm), dynamic scheduling

of subproblems across threads is employed. Again,

in this way, because subproblems are dynamically

scheduled, maximum load balancing is achieved.

Upon processing of the N subproblems by the p
worker threads, the supervisor can then determine

the 2nd best assignment and its corresponding

subproblem, say, (P2,A
¤
(2)). To find the 3rd best

assignment, we simply repeat this loop, replacing

(P,A¤(1)) with (P2,A
¤
(2)), and so on.

V. RESULTS

In this section, after describing both the

implementation environment and characteristics of

the simulated data and the ATS problem used in this

work, we provide the following results: 1) consistent

with the works of other researchers, a comparison

of the auction algorithm and the JVC algorithm

shows the superior performance of the former over

the latter for sparse problems, and vice versa for

dense problems, and 2) plots show the improved

performance of m-best 2-D (utilizing 2-D assignment
algorithm switching and multilevel parallelization)

over the “best” m-best 2-D assignment algorithm
found in the literature (i.e., the m-best 2-D assignment

algorithm due to Cox, et al. [9] with the optimizations

developed by Miller [16] incorporated). To make

the comparisons fair, we also incorporated Miller’s

optimizations in m-best 2-D. However, it should be
noted that the benefits of Miller’s optimizations are

noticeably evident only when solving very large-scale

problems, i.e., 2-D assignment problems several

orders of magnitude greater than those solved in this

work (track and measurement list sizes in the tens of

thousands as opposed to in the hundreds).

A. Implementation Environment

The parallel computing environment used in this

work consisted of a 4-processor SPARCstation 20–a

MIMD shared-memory multiprocessor system. A

simple model of this architecture is illustrated in

Fig. 3 along with various hardware specifications. The

software utilized in this work consisted of the Solaris

2.4.2 development environment, which includes the

SunOS 5.4.2 UNIX operating system (OS) and the

multithreaded system architecture, which we used

as our parallel processing interface. Because of the

numerous performance advantages offered by the

threads model, we chose multithreading, as opposed to
multiprocessing, as our avenue to exploit the multiple

processor resources available in our multiprocessor

system. Multithreading separates a UNIX process into

some number of lightweight independent threads,

each of which (concurrently) executes a sequence

of the process’s instructions. Unlike a process, a

thread requires very little interaction with the OS.

Consequently, threads can be processed quickly (i.e.,

created, maintained, destroyed, blocked, activated,

etc.), thousands can be present at one time, and

synchronization and context switching between

them can be accomplished rapidly. As depicted in

Fig. 3, threads are dispatched across the processor

set indirectly via a two-level scheduling hierarchy.

Threads implicitly communicate via shared memory.

Consequently, synchronization mechanisms (e.g.,

mutual exclusion) must be supported to allow threads

to cooperate in accessing shared data. More details

concerning multithreading can be found in [17, 29].
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Fig. 3. Model of shared-memory architecture.

As a preface to the remainder of this section,

since the 4-processor SPARCstation 20 used in this

work is a time-shared multiprocessor system, the

execution times of any tests performed depended, in

part, on random events such as the system load and

thread schedule order. Consequently, Monte Carlo

simulations were performed, and all results presented

represent the means of those simulations with standard

errors less than 3%.

B. Simulated Data Description

In this section, we provide a brief overview of

the simulated data used in this work. The purpose

of using simulated data was to demonstrate the

performance differences between the auction

algorithm and the JVC algorithm on 2-D assignment

problems of different sizes and sparsities. In Fig. 4,

we provide a pseudocode description of the routine

used to generate the various 2-D assignment problems.

The basic idea in Generate 2D Assignment Problem( )
is to create a problem P in terms of its triplets
hy,z,cyzi. Each track y is a uniform random number

between [1,N], each measurement z is a uniform
random number between [1,M], the cost (or
likelihood) associated with y and z is cyz and is a
uniform integer random number4 between [LB,UB],
where LB and UB correspond to a user specified
lower and upper bound, respectively ([1,1000] in this

work), and the number of triplets in P is based on a
user specified sparsity parameter, i.e., the sparsity of

the problem P is: Sparsity¤N ¤M (see (18)).

C. 2-D Assignment Algorithm Performance

The overall objective of this section is simply to

provide motivation for our proposed improvement

to the m-best 2-D assignment algorithm using

4The assignment cost was limited to integer costs for all testing

because this is a limitation of the auction algorithm. This is

important to note since the JVC algorithm used in this work was

designed for real costs and better performance may have been

obtained in the JVC case if it had been suitably modified to take

advantage of integer costs.

Fig. 4. Pseudocode for 2-D assignment problem generator.

the dynamic 2-D assignment algorithm switching

mechanism in m-best 2-D. In doing so, we compare
the auction algorithm5 with the JVC algorithm,

and demonstrate the superior performance of the

former over the latter for sparse 2-D assignment

problems, and vice versa for dense problems. As a

consequence, more efficient solutions to the numerous

2-D assignment problems generated by the m-best
partitioning task are possible. Our intent here is not

to provide comprehensive results and analyses as it

pertains to the performance characteristics of these

two algorithms. On the contrary, our results are based

on fairly limited testing. However, with respect to the

validity of our claims concerning the performance

characteristics of the auction and JVC algorithms,

we rely heavily on the consistency of our results with

those obtained in numerous other research efforts [5,

6, 13, 14, 20, 32].

The routine Generate 2D Assignment Problem( )
was used to create various 2-D assignment problems

of different sizes and sparsities. As previously

described, this routine will randomly generate (using

a uniform distribution) the tracks, measurements,

candidate measurement-to-track associations, and

costs for those candidate associations. In Fig. 5, we

provide plots comparing the auction algorithm and

5We implemented the generalized auction algorithm as opposed to

the forward-reverse auction algorithm in this work because it was

found that the latter has worse performance than the former for

sparse problems (consistent with other research efforts [32]), and

worse performance than the JVC algorithm for dense problems.

POPP ET AL.: DYNAMICALLY ADAPTABLE M-BEST 2-D ASSIGNMENT ALGORITHM 1153



Fig. 5. Comparison of auction algorithm and JVC algorithm for

n£ n (n= 100,300) assignment problems across a range of
sparsities.

the JVC algorithm for problems of size 100£100
and 300£ 300, respectively. Furthermore, we divided
the plots into two subplots based on the sparsity

of the problem. The upper subplot compares the

auction algorithm and the JVC algorithm for problems

considered to be fairly sparse, i.e., sparsity ranging

from [:01, :09].6 The lower subplot, on the other
hand, compares the auction algorithm and the JVC

algorithm for problems whose sparsity ranges from

mildly sparse to fairly dense, i.e., sparsity ranging

from [0:1,0:9].
In general, as can be seen in each of the plots, the

auction algorithm has fairly consistent behavior for

sparse problems in comparison to the JVC algorithm,

and vice versa for dense problems. This is entirely

consistent with the results of other researchers [9,

13, 14, 20, 32]. In particular, the auction algorithm

outperforms the JVC algorithm for problems that

would be considered fairly sparse (the upper subplot).

At approximately 0:2§ 0:1 sparsity, the auction
algorithm and the JVC algorithm have comparable

performance, whereas, for dense problems, the

JVC algorithm noticeably outperforms the auction

algorithm. As the density of the problem increases,

so too does the likelihood that the level of contention

amongst the tracks for particular measurements

increases. The auction algorithm, benefiting from an

inherent rapid convergence property when determining

solutions to sparse problems, suffers from internal

price wars as the level of contention increases, and, as

a result, experiences degraded performance for dense

problems. However, most practical ATS multitarget

tracking problems have sparsity below 0.1 [4];

6Note that under conditions where sparsity is ¸ 0:02, there would
be on average no less than 6 measurements per track gate, which

would render tracking performance impractical and meaningless for

a 2-D assignment single-scan processing approach.

however, note that this is not the case in general for

multitarget tracking.

Recall that dummy tracks and dummy

measurements were used to ensure feasibility for

the 2-D assignment problem. Also, for both the

auction and JVC algorithms, sparsification techniques

were used to represent the 2-D assignment problem.

As a result, N £M matrices were not used (where

N is the number of tracks and M the number of

measurements). Instead, for the auction algorithm,

the various vectors needed to represent the sparse

2-D assignment problem were either of size N +1,
M +1, or, in the case of the cost vector, in the range

[N,NM]. For the JVC algorithm, a similar scheme
was used as was described in [13], i.e., for each target,

an additional dummy measurement was added. Many

of the same vectors were processed as in the auction

algorithm and were of the same size, e.g., N +1.
However, because N dummy measurements needed

to be added (one per target) to the measurement list

(originally of size M), the cost vector size was in
the range [N +M, (N +M)(N +M)]. In terms of the
performance comparision between the auction and

JVC algorithms described later on, two cases were

considered: 1) Given an N target and M measurement

problem, compare auction and JVC directly (which

implies that the two algorithms process over different

size vectors), and 2) Compare an N1 target and M1
measurement auction algorithm problem with an N2
target and M2 measurement JVC algorithm problem,

where N1 =M1 = (N2 +M2). Both cases were tested
with negligible differences evident. Given the fairly

small size problems considered in this work (i.e.,

100 =N,M = 300), and since the JVC algorithm

typically disregards (jumps over) most target’s dummy

measurements, the direct comparison of 1 was chosen

and in the authors’ view fair.

D. ATS Problem Description

In this section, we provide a simple overview

of the ATS problem used in this work, and refer

interested readers to [33] for a more thorough

presentation. The surveillance system is at a location

referred to as the fusion center. The sensors in this

surveillance system, two L-band FAA air traffic

control radars located at Remsen and Dansville, NY,

respectively, asynchronously transmit scans of data,

approximately every 10 s apart, to the fusion center.

The full measurement database consists of 210 scans

(98 from Remsen and 112 from Dansville), while

a modified version (for which we report results for

in this work) consists of 55 scans (26 from Remsen

and 29 from Dansville). A particular scan received

at the fusion center consists of some number of

measurements (detection reports) consisting of a

number of primary radar (skin) returns (i.e., slant

range, azimuth angle) and secondary (beacon) returns
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Fig. 6. Sequential and parallel performance of m-best 2-D on 4-processor SPARCstation 20.

(i.e., slant range, azimuth angle, altitude). Because

state estimation is done in a three-dimensional (3-D)

Cartesian coordinate system, conversion from a

radar’s polar frame of reference was carried out

[4, 33].

E. m-Best 2-D Assignment Algorithm Performance

In this section, using both simulated data and the

actual FAA data from the ATS problem as described

in Section VD, we demonstrate that more efficient

solutions to the data association problem are possible

when incorporating our proposed improvements

into the m-best 2-D assignment approach to data
association.

1) Performance Results: Multilevel Parallelization:
In providing parallel performance metrics, we use

standard definitions for speedup and efficiency, i.e.,

speedup =
¿1
¿p
, efficiency =

speedup

p
(19)

where ¿1 denotes the sequential execution time
utilizing 1 processor, and ¿p denotes the parallel
execution time utilizing p processors.
In Fig. 6, we provide various plots showing the

sequential and parallel performance of m-best 2-D
using actual FAA data from the ATS problem on the

4-processor SPARCstation 20. Note that because the

ATS problem is sparse throughout, an m-best 2-D
configured with a static auction algorithm to solve the

2-D assignment problem is equivalent to an m-best
2-D configured with the dynamic 2-D assignment

algorithm switching mechanism as proposed in this

work, i.e., no switching occurs.

Since all the 2-D assignment problems contained

within the ATS problem are sparse, m-best 2-D

configured with the auction algorithm outperformed

m-best 2-D configured with the JVC algorithm in

terms of execution time by a factor of (¼ 1:5) using
2 processors and a factor of (¼ 3) using 4 processors.7
However, notice the apparent improvement in terms

of parallel efficiency of m-best 2-D configured with
the auction algorithm versus the JVC algorithm. The

explanation for this is as follows. In determining a

single 2-D assignment problem solution, the JVC

algorithm requires more internal data structures (i.e.,

memory space) than does the auction algorithm.

Consequently, the JVC algorithm suffers from a

greater system-level overhead burden (i.e., the OS

creating and managing the memory space) than does

the auction algorithm. When m-best 2-D sequentially
solves the numerous 2-D assignment problems

generated as a result of the partitioning task, it

can reuse (as opposed to recreate) the additional

memory space. However, this is not the case when

m-best 2-D solves in parallel the numerous 2-D
assignment problems generated, since each of the

subproblems created requires its own instance of

this additional memory space. Consequently, the

system-level overhead burden is compounded when

solving the numerous 2-D assignment problems in

parallel, and, as a result, worse parallel efficiency (and

7Note that the assignment costs in the 2-D assignment problems

were initially real numbers based on a negative log likelihood

function. To be converted to integer cost (which was necessary),

the real cost was multiplied by a scale term and then quantized. The

scale term used in this work was sufficiently large, i.e., 1000, and

resulted in assignment costs in the range of [¡100000,100000]. The
size of the scale term has impacts on execution time and the impact

of different scale term multipliers was not pursued as part of this

work.
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Fig. 7. Comparison of m-best 2-D statically configured with

auction algorithm, JVC algorithm, and utilizing dynamic 2-D

assignment algorithm switching mechanism in simulated ATS

environment (with sparse and dense 2-D assignment problems that

are not very sparse and dense, respectively). Horizontal axis

represents percentage (fraction) of simulated ATS environment that

is sparse relative to dense.

speedup) ensues in m-best 2-D configured with the
JVC algorithm.

2) Performance Results: Dynamic 2-D Assignment
Algorithm Switching: Next, we want to show the

benefit, in terms of performance improvement,

of using the dynamic 2-D assignment algorithm

switching mechanism in m-best 2-D, as opposed to
using m-best 2-D statically configured with a single
2-D assignment algorithm like auction or JVC. These

performance improvements get compounded in an

environment that is dynamic (i.e., sparse and dense)

considering the numerous 2-D assignment problems

generated due to the partitioning task.

In order to demonstrate m-best 2-D in dynamic
environments, we used several of the 2-D

assignment problems created using the routine

Generate 2D Assignment Problem( ) to simulate
various environments having different degrees of

“dynamicness”. In Figs. 7—9, we provide various plots

showing the performance of m-best 2-D statically
configured with the auction algorithm, the JVC

algorithm, and utilizing the dynamic 2-D assignment

algorithm switching mechanism in these simulated

environments. The horizontal axis represents the ratio

of the simulated environments that are sparse relative

to dense. So, for example, at value 1 on the horizontal

axis, half of the 2-D assignment problems in the

environment are sparse, and the other half are dense,

which, in this case, would represent a highly dynamic

environment. As we approach value 0 (9) on the

horizontal axis, the environment becomes more dense

(sparse), and, consequently, less dynamic. Note that

in this work, we used Sparsity = 0:10 as the problem
sparsity threshold value to induce the 2-D assignment

algorithm switching.

Fig. 8. Comparison of m-best 2-D statically configured with

auction algorithm, JVC algorithm, and utilizing dynamic 2-D

assignment algorithm switching mechanism in simulated ATS

environment (with sparse and dense 2-D assignment problems that

are sparse and dense, respectively). Horizontal axis represents

percentage (fraction) of simulated ATS environment that is sparse

relative to dense.

Fig. 9. Comparison of m-best 2-D statically configured with

auction algorithm, JVC algorithm, and utilizing dynamic 2-D

assignment algorithm switching mechanism in simulated ATS

environment (with sparse and dense 2-D assignment problems that

are very sparse and dense, respectively). Horizontal axis represents

percentage (fraction) of simulated ATS environment that is sparse

relative to dense.

Besides the fraction of the environments that is

sparse and dense, another dimension that needed

to be considered is the “degree” of sparsity and

density of the sparse and dense problems in the ATS

environment, respectively. So, for example, in Fig. 7,

the sparsity of the sparse problems is 0:08, whereas
the density of the dense problems is 0:20. In this
case, the sparse problems are not very sparse, and

the dense problems are not very dense. In Figs. 8 and

9, we increased the sparsity of the sparse problems

and the density of the dense problems. In these cases,
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the sparse problems are very sparse, whereas the
dense problems are very dense, respectively. We used
these three examples as boundary cases to analyze
the performance of m-best 2-D utilizing the dynamic
2-D assignment algorithm switching mechanism,
and statically configured with the auction and JVC
algorithms, respectively.
In general, several observations can be made with

respect to each of the plots. First, m-best 2-D utilizing
the dynamic 2-D assignment algorithm switching
mechanism outperformed m-best 2-D statically
configured with the auction and JVC algorithms,
respectively. The reason for this is that the former
is able to switch, incurring negligible overhead in
doing so, between the auction algorithm and the JVC
algorithm, and thereby apply the most highly suited
2-D assignment algorithm for the sparse and dense
problems contained in the simulated environments.
Another observation is that one may notice the gap

widening between m-best 2-D statically configured
with auction versus m-best 2-D statically configured
with JVC as the density of the dense problems in the
environment increases, i.e., as we go from Fig. 7, to
Fig. 8, and then to Fig. 9. The reason for this is that
as the density of the dense problems increases, so too
does the benefits of using the JVC algorithm on the
dense problems versus using the auction algorithm
on the sparse problems, i.e., the performance gains of
using the auction algorithm for the sparse problems
are overshadowed by the performance gains of
using the JVC algorithm on the dense problems.
This same rationale explains why in Fig. 9 the plots
of m-best 2-D statically configured with the JVC
algorithm performs almost equally as well as m-best
2-D utilizing the dynamic 2-D assignment algorithm
switching mechanism.
And lastly, as is evidenced by the plots, the 2-D

assignment algorithm switching mechanism in m-best
2-D is not only beneficial in dynamic environments,
but also static ones as well. The m-best 2-D utilizing
dynamic 2-D assignment algorithm switching
outperforms the m-best 2-D statically configured with
the auction and JVC algorithms at both ends of the
horizontal axis in each of the plots, where, in these
areas, the simulated environment is considered fairly
static. As the plots correctly show, the performance
of m-best 2-D utilizing dynamic 2-D assignment
algorithm switching should approach m-best-2-D
statically configured with auction as the fraction of
the sparse problems in the ATS environment increases,
and likewise for the JVC algorithm as the fraction of
the dense problems in the environment increases.

VI. CONCLUSION

Spurred on by recent interest in the m-best 2-D
assignment algorithm for the data association problem,

in this paper we described several improvements

that enable much more efficient solutions to the

data association problem, especially in dynamic

environments. One improvement was to utilize a

nonintrusive 2-D assignment algorithm switching

mechanism, based on a problem sparsity threshold,

enabling the auction and JVC 2-D assignment

algorithms, each highly suited for sparse and dense

problems, respectively, to efficiently solve the

numerous 2-D assignment problems generated as

part of the partitioning task. Another improvement

was to utilize a multilevel parallelization of the

data association problem, i.e., we parallelized the

partitioning task and the data association interface

task. This parallelization enables not only multiple

2-D assignment problems to be executed in parallel,

but also the numerous gating tests, state estimates,

covariance calculations, and likelihood function

evaluations (used as cost coefficients in the 2-D

assignment problem). Finally, using both simulated

data and an ATS problem based on two FAA air

traffic control radars, we demonstrated that more

efficient solutions to the data association problem

are possible when using the m-best 2-D assignment
algorithm with our improvements incorporated.
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