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Abstract—The focus of this paper is to present the results of our investigation and evaluation of various shared-memory
parallelizations of the data association problem in multitarget tracking. The multitarget tracking algorithm developed was for a
sparse air traffic surveillance problem, and is based on an Interacting Multiple Model (IMM) state estimator embedded into the
(2D) assignment framework. The IMM estimator imposes a computational burden in terms of both space and time complexity,
since more than one filter model is used to calculate state estimates, covariances, and likelihood functions. In fact, contrary to
conventional wisdom, for sparse multitarget tracking problems, we show that the assignment (or data association) problem is
not the major computational bottleneck. Instead, the interface to the assignment problem, namely, computing the rather
numerous gating tests and IMM state estimates, covariance calculations, and likelihood function evaluations (used as cost
coefficients in the assignment problem), is the major source of the workload. Using a measurement database based on two FAA
air traffic control radars, we show that a “coarse-grained” (dynamic) parallelization across the numerous tracks found in a
multitarget tracking problem is robust, scalable, and demonstrates superior computational performance to previously proposed

“fine-grained” (static) parallelizations within the IMM.

Index Terms—Air traffic surveillance, multitarget tracking, Interacting Multiple Model (IMM) estimator, shared-memory MIMD

multiprocessor, data association, assignment problem.

1 INTRODUCTION

1.1 Motivation

W ITH the availability and widespread usage of general-
purpose shared-memory MIMD multiprocessor sys-
tems, there is increased interest in the parallelization of new
types of problems that were not addressable in the past. In
particular, surface-based, airborne, and space-based sur-
veillance are several such examples. In general, the objec-
tive of a surveillance and tracking algorithm is to detect an
unknown number of targets in the presence of spurious
observations and occasional missed detections, and to esti-
mate their states (e.g., position, velocity, acceleration) using
sensor measurements of (possibly) unknown origin, and
contaminated by noise and clutter. To be computationally
feasible, multitarget tracking algorithms often require large
computational resources because of the limited perform-
ance of such algorithms on conventional uniprocessor sys-
tems [18], [19]. Motivated by the numerous advantages of-
fered by shared-memory multiprocessing systems, e.g.,
cost, availability, and widespread usage, the focus of the
present work was to adapt a serial multitarget tracking
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algorithm developed for a sparse air traffic surveillance
problem [26] to such systems.

Typical of many realistic air traffic surveillance problems
are:

1) the existence of multiple targets in the surveillance
region, and

2) uncertain target dynamics, namely, target motion
having constant course and speed (nonmaneuvering)
segments interspersed with arbitrary maneuvers
(often characterized as piecewise constant).

Consequently, in developing a tracking solution to such
problems, one must resolve two inherently related sub-
problems, namely, filtering, i.e., state estimation, of sensor
data over time, and fusion, i.e., data association, of sensor
data across sensor scans, wherein the main goals are over-
coming the inherent limitations of real-world sensors
(accuracy and reliability) due to noise and clutter, while not
sacrificing computational tractability.

In a typical air traffic surveillance problem, multiple tar-
gets with dynamic target motions must be tracked. Conse-
quently, a state estimator that is flexible and adaptable is es-
sential. The classical Kalman filter (KF)—the workhorse of
state estimation—has been found to provide only marginal
tracking performance for such problems because of the sin-
gle motion model assumption [6], [15], i.e., target motion
cannot be modeled well via a single set of state equations
given the uncertain target dynamics inherent to such prob-
lems. However, unlike the KF, the Interacting Multiple
Model (IMM) estimator [6], [7] has proven to be very effec-
tive for such problems. To achieve superior tracking per-
formance, the IMM estimator, consisting of a finite number
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of filters, each modeling different target motions, contains
an explicit provision for the target’s filter to probabilisti-
cally “switch” from one motion model to another [10].
However, the IMM estimator also imposes an increased
computational burden in terms of additional state esti-
mates, covariance calculations, and likelihood function
evaluations.

Rarely does a realistic air traffic surveillance problem in-
volve tracking the state of a single known target. Conse-
quently, inherent to such problems is the data association
problem. Data association is the decision process of linking
measurements (from successive scans) of a common origin
(i.e., a target or false alarm) such that each measurement is
associated with at most one origin. The nature of the mul-
titarget data in the surveillance region often motivates the
choice of algorithm to use in solving the data association
problem. For example, in this work, the FAA multitarget
data can be characterized as sparse and nonstressful, i.e.,
uncluttered, not very noisy, absent of many crossing, split-
ting, merging tracks. For these types of multitarget tracking
problems, a single scan processing approach for data asso-
ciation has been found to work rather well [9]. Conse-
quently, in this work, we solve the data association problem
by embedding a state estimator, such as a Kalman filter or
the IMM estimator, into the assignment framework, i.e.,
two-dimensional (2D) assignment problem. In such a for-
mulation, the state estimator provides a score (i.e., likeli-
hood) of how likely a particular measurement from a given
scan originated from a particular target track. The problem
is then one of finding an assignment, in a (global) maximum
likelihood sense, of measurements from the latest scan to the
most likely tracks from the previous scans. Any well-
known 2D assignment algorithm can be used in finding the
optimal solution, e.g., auction, shortest augmenting path,
interior point methods.

Historically, the most computationally intensive aspect
of multitarget tracking has been the task of solving the data
association problem; that is, partitioning the scan meas-
urements into tracks and false alarms so that accurate esti-
mates of true tracks can be recovered. This is especially true
for dense, highly cluttered, and/or highly contentious
multitarget scenarios. However, as we will show in this
work, contrary to conventional wisdom, for sparse multi-
target tracking problems, the assignment (or data associa-
tion) problem is not the major computational bottleneck.
Instead, the interface to the assignment problem, namely,
computing the rather numerous gating tests and IMM state
estimates, covariance calculations, and likelihood function
evaluations (used as cost coefficients in the assignment
problem), is the major source of the workload.

1.2 Related Research

A literature survey of parallel state estimators developed
for air traffic surveillance problems reveals a plethora of
“fine-grained” parallelizations proposed over the years
[3], [4], [12], [25]. With respect to the KF, typically, many
numerically intensive computations inherent to state es-
timation were parallelized, such as coordinate transfor-
mations, state and covariance estimates, linear algebraic
operations, such as matrix multiplication, Cholesky

(square root) factorization, and inner products. With re-
spect to the IMM state estimator, Atherton and Lin [3] and
Averbuch et al. [4] developed fine-grained parallelizations
on a (four-processor) distributed-memory transputer and
shared-memory MIMD multiprocessor architecture, re-
spectively. Essentially, the multiple filter models of the
IMM estimator are run in parallel, while the other compo-
nents of the estimator (i.e., interaction, update, and com-
bination steps) are run sequentially. Using an IMM esti-
mator configured with nine and 13 filter models, Atherton
and Lin obtained speedups (efficiencies)' of 2.34 (59 per-
cent) and 2.73 (68 percent), respectively. Averbuch et al.
were able to obtain a speedup (efficiency) of three (75 per-
cent) for an IMM estimator configured with 12 filter mod-
els. However, as we will show in this paper, a fine-
grained parallelization within the IMM estimator proves
to be computationally inadequate in the context of a mul-
titarget tracking problem. In particular, the performance
of a fine-grained parallelization is dependent on the num-
ber of models used in the IMM, with marginal speedups
obtained only when the number of filter models used is
unrealistically high. In fact, when the IMM estimator 1s
configured with a number of models considered suitable®
for an air traffic surveillance problem (e.g., two-three), the
execution time of the fine-grained parallelization is
greater than sequential time.

Current work documented in the literature [1], [2], [9],
[19], [24] tends to view the data association problem in
multitarget tracking as :

1) a nearest-neighbors problem, wherein an overall dis-
tance function between measurement and track pair-
ings is minimized, or,

2) a statistical estimation problem, wherein a set of
measurements is associated with a set of tracks and
false alarms by an unknown random permutation.

Nearest neighbor data association is problematic because
it causes the state estimator to become overconfident.
Consequently, with some probability, incorrect measure-
ments will be fed into the filter, thereby losing tracks [7].
Data association based on statistical estimation tech-
niques, as exemplified by Reid’s classical Multiple Hy-
potheses Tracking (MHT) method [24] and MHT variants,
such as the track branching/splitting algorithm of [2], and
the model-based algorithms of [19], use a deferred deci-
sion approach to data association. Final decisions per-
taining to difficult data association situations can be post-
poned until more information, such as the next scan(s) of
data, are received. For stressful multitarget scenarios,
postponing these decisions works rather well, whereas the
lack of information in the 2D assignment approach (single
scan processing) may lead to improperly partitioned

1. The standard definitions of speedup and efficiency are used, i.e.,

7
speedup = T—l, where 7, () denotes the sequential (parallel) execution time
P

speedup
P

utilizing one (p) processor(s), and efficiency = , respectively.

2. Unsatisfactory tracking performance may result in an IMM estimator
with a large number of filter models, since many of the models will differ
significantly from the system mode in effect at a particular time, yielding
excessive “competition” from the “unnecessary” filter models.
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measurements into tracks and false alarms. However, for
nonstressful multitarget scenarios, as is the case in the
present work, single scan processing suffices. In theory,
MHT can provide the optimal tracking solution; however,
the computational feasibility of MHT is questionable since
an enumerative search of numerous hypothesized per-
mutations is required to determine their likelihoods, with
the complexity increasing exponentially with the number
of feasible tracks. As examples of MHT in parallel com-
puting environments, in [1], Allen describes efficient
mappings of an MHT algorithm onto massively parallel
computers, while, in [19], Pattipati et al. describe efficient
mappings of a model-based MHT algorithm onto general-
purpose shared-memory MIMD multiprocessors. In [2],
Atherton et al. describe an efficient parallel track branch-
ing/splitting algorithm on a distributed-memory mes-
sage-passing transputer architecture.

1.3 Scope and Organization of Paper

To date, there has been a lack of efficient and practical par-
allelizations of the data association problem in multitarget
tracking problems on general-purpose shared-memory MIMD
multiprocessor systems. Filling this gap is the primary focus
of the present work.

We begin this paper by describing, in Section 2,

1) our multitarget tracking problem based on two FAA
air traffic control radars located in upstate New York,
and

2) the multitarget tracking algorithm developed in a
previous research effort [26] to solve this problem.

In Section 3, we provide a workload analysis of the sequen-
tial implementation of our multitarget tracking algorithm,
while in Section 4, we describe “fine-” and “coarse-grained”
parallelizations developed for a general-purpose shared-
memory MIMD multiprocessor. The fine-grained paralleli-
zation, similar to the ones described in [3], [4], is static and
within the state estimator. The coarse-grained parallelization,
as we propose in this research, is dynamic and across the nu-
merous tracks found in our multitarget tracking problem.

As we will show in this paper, the coarse-grained paral-
lelization is a practical choice for multitarget tracking
problems because it is robust, scalable, and has excellent
computational performance. In Sections 5 and 6, we pro-
vide an analytical proof and various performance results,
respectively, that show the superior performance of the
coarse-grained parallelization over the fine-grained paral-
lelization. In Section 7, we provide some concluding re-
marks concerning this research.

2 MULTITARGET TRACKING ALGORITHM

In this section, we provide a brief exposition of our multi-
target tracking algorithm, termed IMM-2D, illustrated in
Fig. 1. The algorithm consists of four primary components:

1) Obtain Scan Measurements,

2) The Data Association Interface Problem, which, in our
tracking approach, is primarily concerned with
coarse and fine gating (defined shortly), and IMM
state estimation,

_|scan k

Obtain Scan Measurements ‘

\\r Process Candidate Associations

Data Association Interface Problem ‘ ,,,,,,
\ ‘ - IMM State Estimation

I
I
|

- Coarse & Tine Gating |
I
I
I
I

Data Association Problem
- 2D Assignment Problem

‘\,

Track Formation (Initialization)
and Maintenance (Extension)

next scan, k+7

Fig. 1. Block diagram of our multitarget tracking algorithm.

3) The Data Association Problem (via a 2D assignment
problem), and

4) Track Formation and Maintenance. Interested readers
can find a more thorough presentation of IMM-2D in
[20], [21].

2.1 Obtain Scan Measurements

Since it is not the main focus of this paper, we only present
a simplified description of the air traffic surveillance prob-
lem here and refer interested readers to [20], [21], [26] for
more details. The surveillance system is at a location re-
ferred to as the fusion center. The sensors in this surveil-
lance system, two L-band FAA air traffic control radars
located at Remsen and Dansville, New York, respectively,
asynchronously transmit scans of data, approximately
every 10 seconds, to the fusion center. The full database con-
sists of 210 scans (98 from Remsen and 112 from Dansville),
while a modified version of the database (for which we re-
port in this paper) consists of 55 scans (26 from Remsen and
29 from Dansville). A particular scan, say scan k, received at
the fusion center consists of M(k) detection reports con-
taining a number of primary radar (skin) returns (i.e., slant
range, azimuth angle) and secondary (beacon) returns (i.e.,
slant range, azimuth angle, altitude). Because state estima-
tion is done in a three-dimensional (3D) Cartesian coordi-
nate system, conversion from a radar’s polar frame of refer-
ence is necessary [7], [26].

2.2 Data Association Interface Problem

In this section, we describe the two tasks that must be
performed when interfacing with the data association
(2D assignment) problem, specifically, state estimation,
via an IMM estimator, and various coarse and fine gating
tests. Of these two tasks, the former is the single most
costly in terms of processing cost, and comprises a signifi-
cant fraction of the workload in the IMM-2D tracking
algorithm.

2.2.1 IMM State Estimation

For the air traffic surveillance problem used in this work,
the IMM state estimator was employed for state estimation.
Since it is not the main focus of the present work, we omit a
detailed exposition of the underlying theory defining the
IMM and simply provide a brief discussion of the state es-
timation problem in general. Interested readers can refer to
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Appendix A and [6], [7] for a more detailed presentation of
the material.
State estimation provides :

1) a score of how likely a particular measurement from a
given scan originated from a particular target track,
i.e., provides a measurement-to-track association likeli-
hood that serves as the basis for an assignment cost
coefficient in the 2D assignment (data association)
problem, and

2) an estimate of the target state.

In the state estimation problem, we assume that the target
state evolves according to a known linear dynamic model,
corrupted by process noise, and driven by a known input,
ie.,

x(tmk) = F(6) x(tmkil) +G(9) v(tmkil), (1)
where, in the present work, the target (or track) state

x() = [x yzxy z'], is a second order kinematic model with

3D coordinates, § = tu, ~ b, is the time interval, F(-) is the

state transition matrix, G(-) is the disturbance matrix, and
v(-) is zero-mean, white Gaussian process noise with

(known) covariance matrix Q(-). Furthermore, the meas-
urements are linear functions of the target state corrupted
by measurement noise, i.e.,

z(tmk, mk) = Hx(tmk) +w(my), (2)

where m, =1, ..., M(k) denotes the m;th measurement from
the kth scan, H = [I 0 0] is the measurement matrix, and w(-)
is zero-mean, white Gaussian measurement noise with
(known) covariance matrix R(:).

2.2.2 Coarse and Fine Gating

To reduce the number of likelihood functions to evaluate,
which, in terms of processing cost, is the single most costly
operation to perform, gating—a pruning technique to filter
out highly unlikely candidate associations—is used. A track
gate is the region in measurement space in which the true
measurement of interest will lie, in view of all uncertainties,
with some (high) probability [7]. A measurement within the
gate is a candidate for association to the corresponding
track.
Define the set of candidate associations at the kth scan by

C(k)é {(n, mk) : (n, mk) e N(k-1)x M(k)}, 3)

where N(k — 1) x M(k) denotes the cross product of the track
and measurement sets. In IMM-2D, for each (n, m;) € C(k), a
coarse gating test is first invoked, denoted by

G. : C(k) - {o,1}, )
which consists of a maximum velocity gate test (i.e., meas-
urement falls within the track’s maximum velocity gate),
and, if applicable, a high process noise Kalman filter ellipti-
cal gate test. G(n, m;) = 1 denotes that measurement m; fell
within both of track n’s maximum velocity and elliptical
gates, while G,(n, m;) = 0 denotes that measurement m, fell
outside either of track n’s gates. For maximum velocity
gating, we use the following test,

z(tmk , mk) - ch(tmm )H

(tmk N tmk—l

?
>MAX_SPEED, 5)

?
where the relation “>” compares the Lh.s. term with the
r.h.s. term, and returns true if the former is greater than the
latter, and false, otherwise. The residual terms in the nu-

merator above are defined as follows: z(tmk, mk) is the myth

measurement in scan k having time stamp by s H is the

measurement matrix, and J?(tmkfl) is the track state estimate
at time £, . The MAX_SPEED parameter is an assumed

upper bound on the target’s maximum velocity. For ellipti-
cal gating, we use a log-likelihood ratio test, i.e.,

PoAys(m, my) !
Akf(o’ mk)

where Aif(-) denotes the likelihood function provided by a
Kalman filter, the detection probability P, = 0.95 is based
on FAA standards [26], and the false alarm pdf Akf(O, my) is
the spatial density of the false measurements (assumed uni-
formly probable over the sensor’s field of view) [7].

Define the set of candidate associations passing the
coarse gating test G,(-) by

E(k)é{(n, mk):(n, mk) e C(k), Gc(n, mk) = 1}, (7)

where each (1, m) € L(k) requires the application of a fine
gating test (based on the IMM estimator). Denote the fine
gating test by

0, 6)

Gr: L(k) — {0, 1}, 8)

where G (1, m;) = 0 denotes that candidate association (1, 1)
is not to participate in the data association (2D assignment)

problem because it is more likely that measurement m; corre-
sponds to a false alarm than to track n. Conversely, Gf(n, ™)

=1 denotes that candidate association (1, m;) is to participate
in the data association problem, where the cost of assigning

measurement m, to track n is defined next.

2.3 Data Association Problem

Data association is the decision process of linking measure-
ments (from successive scans) of a common origin (i.e., a
target or false alarm) such that each measurement is associ-
ated with at most one origin. In IMM-2D, we formulate the
data association problem as a 2D assignment problem. Spe-
cifically, M(k) measurements from the latest scan k are to be
assigned to the N(k — 1) most likely existing tracks from the
previous scans using a global cost minimization function
[7] (based on a maximum likelihood function). Specifically,
let n =0, ..., N(k — 1) denote a particular track from the set
of existing tracks (including a dummy track n = 0), and m; =
0, ..., M(k) denote a particular measurement from the latest
set (scan) of measurements (including a dummy measure-
ment m; = 0). Define the binary assignment variable
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if measurement m, is assigned to track n

1
d = 9
i {0 otherwise ©)

Note that d,= 1 implies that track n is unassociated and has
missed a detection at scan k. Furthermore, dy,,, =1 implies

that measurement m; is unassociated, that is, not assigned

to any of the N(k — 1) previously established tracks, but,
instead, assigned to the dummy track (false alarm). Since
measurement errors within a scan are independent of each
other, maximizing the likelihood function, consisting of the
joint pdf-probability [7] of measurements, given their ori-
gins and the corresponding detection events, over the set of
feasible assignments, can be cast into the following 2D as-
signment problem

. N(k-1) o M(k)
min 2;1:0 Zmﬁo cnmkdnmk
M(k)
st b =1 =1

N(k-1)
Doy oy =1 m =1, M(k),

where the cost of assigning measurement m, to track » is

,N(k-1)

(10)

0 ifn=00orm =0
o= -1og(Mj if — log() < 0 (11)
nmy A(0,my)
oo otherwise

The numerator in the above — log(-) expression, based on a
likelihood function calculation A(-) from the IMM esti-
mator (via (28) in Appendix A), is the likelihood that the
mth measurement at scan k originated from the nth track,
and the denominator is the likelihood that the m;th meas-
urement corresponds to none of the existing tracks (i.e., a
false alarm). The likelihood of false alarms, i.e., A(0, 1), is
assumed uniformly probable over the sensor’s field of
view [7].

2.4 Track Formation and Maintenance

Unassociated measurements in the 2D assignment problem
are used to initialize new tracks. Initializing (forming)
tracks based on a single measurement is somewhat differ-
ent from the common two point differencing technique [6].
However, in air traffic surveillance, it is beneficial, since the
difference in times between scans is often relatively short.
Associated measurements in the 2D assignment problem
are used to extend existing tracks, i.e., the corresponding
track state vector is updated via (33) in Appendix A with
the new measurement at scan k based on the solution to the
2D assignment problem. Tracks that go unassociated (i.e.,
not assigned a measurement) in the 2D assignment problem
for a specified threshold of consecutive scans are termi-

nated (dropped). In this work, the drop track threshold
spans approximately 100 seconds, which roughly corre-
sponds to 20 consecutive scans.

3 WORKLOAD ANALYSIS

Historically, the most computationally-intensive aspect of
multitarget tracking has been the task of solving the data
association problem, that is, partitioning the scan measure-
ments into tracks and false alarms so that accurate esti-
mates of true tracks can be recovered. However, as shown
in Table 1, the vast majority of the workload in IMM-2D
when run on the multiprocessor architectures used in this
research (described in the next section) involves processing
the set of candidate associations in interfacing with the 2D
assignment (data association) problem. In fact, this consti-
tutes 94.3 percent, 94.7 percent, 95.2 percent, and 96 percent
of the workload when IMM-2D is configured with one, two,
three, and five filter models in the IMM, respectively. Re-
call, as described in Section 2.2, interfacing with the 2D as-
signment problem consists of performing numerous gating
tests and assignment cost coefficient computations (i.e., the
log-likelihood function (11) based on the IMM state esti-
mator). If one were to follow conventional wisdom, namely,
parallelize the data association (assignment) problem, 1.1
percent, 0.8 percent, 0.6 percent, and 0.2 percent of the
workload would have been targeted for parallelization,
respectively. Clearly, for a sparse air traffic surveillance
problem such as the one we have in the present work, a
parallel assignment algorithm would yield, at best, minimal
benefits. However, although not negating the significance
of the interface problem, for dense, highly cluttered, and/or
highly contentious multitarget scenarios, where data asso-
ciation may subsume a significant fraction of the total com-
putation, a parallel assignment algorithm, such as those
described in [5], [8], [13], would provide increased benefit.
In this work, since it is the significant computational bottle-
neck, we developed parallelizations of the interface to the
2D assignment (data association) problem in IMM-2D, of
which we now describe.

4 IMM-2D SHARED-MEMORY PARALLELIZATION

The shared-memory computing environment used for this
work consisted of several general-purpose MIMD multiproc-
essors, namely, a two- and four-processor SPARCstation 20,
and a 12-processor SPARCcenter 2000. A simple model of the
four-processor SPARCstation 20 architecture is illustrated in
Fig. 2 with various hardware specifications provided. The
software utilized consisted of the Solaris 2.4.2 development
environment, which included the SunOS 5.4.2 UNIX operat-
ing system (OS) and the multithreaded system architecture,

TABLE 1
WORKLOAD DISTRIBUTION WITHIN IMM-2D

IMM-2D COMPONENT # OF FILTER MODELS IN IMM
1 (KF) 2 3 5
Obtain Scan Measurements 0.8% 0.6% 0.5% 0.3%
Data Association Interface (Gating, IMM) 94.3% 94.7% 95.2% 96%
Data Association Problem (2D Assignment) 1.1% 0.8% 0.6% 0.2%
Track Maintenance and Formation 3.8% 3.9% 3.7% 3.5%
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SPARC-bused Shared-Memory Architecture Multithreaded System Architecture

S0MHz
Pl Pz P} P4 SuperSPARCH
: processors Multithreaded Process
C, C: C, C, 1M
bus-hased interconnection Thread/OS Scheduler
64 MB
RAM P P, P P

Fig. 2. Model of shared-memory architecture.

which we used as our parallel processing interface.

Multithreading separates a UNIX process into light-
weight independent threads, each of which (concurrently)
executes a sequence of the process’s instructions. As de-
picted in Fig. 2, threads are dispatched across the proces-
sor set indirectly via a two-level scheduling hierarchy.
Threads implicitly communicate via shared memory; con-
sequently, synchronization mechanisms (e.g., mutual ex-
clusion) must be supported to allow threads to cooperate
in accessing shared data. Because of the numerous per-
formance advantages offered by the threads model, we
chose multithreading, as opposed to multiprocessing, as
our avenue to exploit the multiple processor resources
available in our multiprocessor system. Unlike a process,
a thread requires very little interaction with the OS. Con-
sequently, threads can be processed quickly (i.e., created,
maintained, destroyed, blocked, activated, etc.), thou-
sands can be present at one time, and synchronization and
context switching between them can be accomplished
rapidly. More details concerning multithreading can be
found in [16], [22].

4.1 Coarse-Grained Parallelization

The coarse-grained shared-memory parallelization of the
interface to the 2D assignment problem in IMM-2D is based
on the supervisor/worker model (see Fig. 3). The supervi-
sor thread initially forks a specified number of worker
threads, say p, to process the set of candidate associations,
((k), defined by (3) in Section 2.2.2. Once forked, the super-
visor awaits processing of C(k) to be completed by the p
worker threads via a join operation. Worker threads, asyn-
chronously and in parallel, process a specified number of
candidate associations per serialized critical section access
across mutually exclusive track and measurement data.
Recall, as described in Section 3, the processing of a candi-
date measurement-to-track association consists of per-
forming two coarse gating tests (the second test is per-
formed only if the first succeeds), and, if the measurement
falls within both of the track’s gates, a fine gating test is
applied, i.e., the log-likelihood function (11), based on the
IMM state estimator. Since the processing cost correspond-
ing to each candidate association is not uniform (depends
on the results of gating), dynamic scheduling of candidate
associations across threads is employed. In this way, be-
cause candidate associations are dynamically scheduled,
maximum load balancing is achieved [11]. Upon processing
of C(k) by the worker threads, the supervisor solves the
global 2D assignment problem.
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Fig. 3. Task graph of IMM-2D shared-memory parallelization.

4.2 Fine-Grained Parallelization

As pointed out in [3], [4], the IMM approach to target
tracking is highly suited to parallel processing, since the
different filter models may be assigned to different proc-
essors. This obvious fine-grained parallelization is appar-
ent from the general structure of the IMM (see Fig. 10 in
Appendix A). In the fine-grained parallelization, similar
to those described in [3], [4], each candidate association in
C(k) passing the two coarse gating tests will have an as-
signment cost coefficient (i.e., log-likelihood function (11))
computed based on a parallelized IMM state estimator.
However, the set C(k) is sequentially iterated over and the
two coarse gating tests are sequentially processed. Note
that, in this approach, the parallelization is within the
IMM for each track processed, i.e., the IMM estimator it-
self is parallelized, as opposed to across the multiple
tracks found in a multitarget tracking problem, as is the
case for the coarse-grained parallelization, i.e., the proc-
essing of candidate associations is parallelized.

5 ANALYTICAL ANALYSIS

In this section, we present analytical models for the
coarse- and fine-grained parallelizations using the micro
time cost analysis technique as described in [23]. We then
compare the derived time cost expressions correspond-
ing to the parallelizations, and show that the former is
superior, in terms of computational performance, to the
latter.

Given a particular scan k, assume that we have N =
N(k — 1) tracks, M = M(k) measurements, and NM =
| C(k)! = N(k — 1)M(k) candidate associations to process
at scan k. Also, assume that we have p threads (or proc-
essors), an IMM estimator with r models, and, without
loss of generality, assume that 7 = zp, z € N (z a positive
integer). In the fine-grained parallelization, p threads in
parallel process r filter models of the IMM estimator, each
thread processing over z models. In the coarse-grained par-
allelization, p threads in parallel process the set of ((k) can-
didate associations, sequentially iterating over the r filter
models when computing assignment cost coefficients. To
simplify the analysis, assume all similar computations take
an equivalent amount of time. ’

The general computational structure model (CSM) [23]

3. We make this assumption primarily to simplify the analysis by avoiding
minimization and /or maximization functions. Moreover, because we employ
a homogeneous data partitioning strategy where each thread executes exactly
the same operations, but on different data segments, and the operations exe-
cuted are not data dependent, such an assumption is not unreasonable.
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combination

Fig. 4. CSM for the fine-grained parallelization.

for the fine-grained parallelization is illustrated in Fig. 4.
All the primitive operations and/or basic utility routines in
this computation are specified as follows:

fork :thr_ Create( ) p times
join:thr_ join( ) p times

filter,,:fori =1,...,p, thread i computes z filters filter,,,,
m=@G-Dz+1,...,iz

Ane1

Ayimy 1

Ay:C[n,m ] <0
A, :C[n, mk] «—c,

L'nen+1l

", (11)in parallel

Iyom, < m +1

Dy:n<N

D,:m, <M

D3zgc(n,mk) =1&& Gf(n, mk) =1

where A;, i =1, ..., 4 denotes an assignment node, D, j =
1, ..., 3 a decision node, and [, k = 1, 2 an increment
node. To derive the number of times each node is exe-
cuted, we utilize the flow analysis techniques as de-
scribed in [23]. The time cost for the fine-grained parallel
computation is

Thpe =Ty +Tpp + N(Tp . + T, +TD2=F+T11)+
NM[ byor + T )+ (1= )Ty + T, )+a(TD3:T+TA4)]
=Ty +Tp g+ N(Tpp + Ty +Tp _p+T, )+
NM|(Ty, g + T, ) + (1= 0T + Ty ) +
a(TD3=T+T,+TfO,k+zTﬁM +TW+TU+TC)] (12)

where T;, Ty, and T denote the interaction, update, and

. 01

combination

Fig. 5. CSM for the coarse-grained parallelization.

combination time costs, respectively, within the IMM es-
timator (see Appendix A for details), TD, =T (TD, = F),
for I = 1, 2, 3, denotes the time cost for the true (false)
branch to execute, or denotes the number of times a log-
likelihood function (11) is evaluated, and 1 — ¢, the num-
ber of times a log-likelihood function is not evaluated due
to the gating tests.

The general CSM for the coarse-grained parallelization is
illustrated in Fig. 5. All the primitive operations and/or
basic utility routines in this computation are specified as
follows:

inity: track_id < 1; measurement _id < 1
fork: thr_ create() p times
join: thr _ join() p times
t.:ith thread calls procedure process_ assoc()
init,: init_ TSD()— get thread specific data segment
(un)lock;: read/ write (un)lock on mutex
get_job;:n « track_id, m, < measurement_id,
then update indices track_ id & measurement_ id
D, :n>N

D, :j< ((M =1)& & (m, + tasksize))
D;:G.(n,m) =1&& G(n,m) =1
Apij e my

A, :Cln, j] <0
A3i:C[n, ]] —c

L:jej+1

4 (11)in serial

The time cost for the coarse-grained parallel computa-
tion is
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Tcou‘rse = Tinit + Tfork + T/om + T
= ’I;’m’t + Tfnr T]mn + Tmtt
NM
(1 + P )(T}ocki + Tget_jnbl + Tunlock ) + TDl, -r T

NM
- [T’u + TD]’;F + TAIi + TDz’;F +TD21 rt

(1- a)(TDg T, ) + a(TDS;T +T, H
=T . +T,

init, fork join init;

(1 + NT)(T}OCI(X + Tget_]ob + Tunlock )
Ty, + L[ T,
Ty, o+ (1- a)(TD

a(TDaf:T $T 41Ty, + T, + T H . (13)

Note that, for each of the i =1, ..., p threads in the coarse-
grained computation, the time cost to access the critical sec-
tion Tget job. is nondeterministic because of a wait time cost in

trying to acquire the mutex lock mutex. Therefore, define

A
Tget_jub, = TW, + TAi’ (14)

where T,,, denotes the wait time cost for the ith thread, and

i

T, denotes the time cost for the ith thread to execute the

critical section (i.e., obtain a specified number of candidate
associations and update the track and measurement indices
track_id & measurement_id, respectively). Thus, T, is a ran-

dom variable for which we need to determine an expected
time cost. Given p threads trying to acquire the mutex lock
mutex, and, considering the worst case mutex lock access
policy (i.e., assume a round-robin policy), since the thread
may not necessarily acquire the mutex lock within p tries,
we use a geometric distribution to model its probability
distribution. Letting A denote the event “a thread acquires
mutex on a given try,” then

1

and the expected time cost for T, (in the worst case) is
Y1 T, & 1Y
E{Tw} = %TA](I—?] 5= 7%]( _5]
T _1
_% ( p) 7= A‘.(P 1) (16)
1
- p
(1-(1-3)
Substituting (16) into (14), we obtain
Tgetﬁjobi = pTAi’ (17)

Assume that the base time costs for all assignment, deci-
sion, increment, lock, and unlock nodes have unit cost.
Further, assume that the worst case time cost in executing
the critical section is TA[ =5 (i.e, two assignments, two in-

crements, and one decision node). Hence, after some alge-
braic simplifications, we get
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4 -
Tﬁ =2+4+4N + —+ NM +NMa
(T + Toe + 2Ty + Ty + Ty + TC) (18)
14 -
Tcuﬂrse =6+5p+NM “NM + Tfor T]om
NMao
(T, + 7T + Ty, + T (19)

From (18) and (19), define constants

R=2+4N+W

and

14 -«
S=6+5p+NM( ; J

where R and S are insignificant constants that are domi-
nated by the remaining terms in their respective equations.
To determine how they (relatively) compare, we form the
following relationship between the two time cost equations:

?

T T >0

fine — ~coarse

(20)

[R + NMa(T + T + 2Ty + Ty + Ty + TC)] -

[s FTo + Ty + (T, /T, 4T, 4T, )] 20

]om
(21)
Again, after some algebraic simplifications, we get
p(R-S) 1
N+ P * T 1~ N |+
(TI + TU +1 )(P 1) leter (PZ - I’) >0 (22)
p(R-S) 1
NMo + p(Tfork + T]om) 1- NMoao +
(T, + T, +T)(p-1)> 0 (23)

Clearly, irrespective of the number of threads (processors)
p, filter models r, and the number of candidate associations
NM for a given scan, the coarse-grained parallel computa-
tion has a smaller time cost than the fine-grained parallel
computation. In the next section, we provide empirical evi-
dence that further supports this assertion.

6 RESULTS

In this section, based on the two- and four-processor SPARC-
station 20, and the 12-processor SPARCcenter 2000, we dem-
onstrate the computational superiority of the coarse-grained
parallelization of IMM-2D, making comparisons with both
the fine-grained parallelization and a serial implementation
of IMM-2D. In the fine-grained parallelization, the multiple
filter models of the IMM estimator are evenly distributed
across the processor set in a manner similar to the approach
described in [3], [4]. Since the multiprocessors used in this
work are time-shared systems, the execution times of IMM-
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Fig. 6. Execution time of IMM-2D on a two- and four-processor SPARCstation 20 using various coarse gating policies. Horizontal axis denotes #

of filter models in IMM configuration.

2D depended, in part, on random system events such as the
system load and thread schedule order. Consequently, Monte
Carlo simulations were performed, and all results presented
represent the means of those simulations with standard er-
rors less than three percent.

6.1 Execution Time

In Fig. 6, we plot the execution times of the sequential, the
coarse- and fine-grained parallelizations of IMM-2D on the
two- and four-processor SPARCstation 20. Note that Mach 2
and Mach 5 simply denote the speed of an aircraft to be two
and five times the speed of sound, respectively. The signifi-
cance of these two parameters is as follows. As described in
Section 2.2.2, one of the coarse gating policies employed in
IMM-2D is based on an aircraft’'s maximum velocity. In-
creasing the magnitude of the Mach parameter will increase
the spatial area of the track’s maximum velocity gate, thus
increasing the processing cost associated with the track
since a greater number of measurements will fall within the
gate.

Clearly, the coarse-grained parallelization demonstrates
superior execution time performance over the fine-grained
parallelization for any number of models used in the state
estimator. Moreover, the performance of the fine-grained
parallelization is dependent on the number of models used,
yielding marginal performance improvements only when
using an unrealistically large number of filter models. Fur-
thermore, when configured with a small to moderate num-
ber of models (three or less) that would be considered
practical for an air traffic surveillance problem, the fine-
grained parallelization yields execution time greater than se-
quential time.

The computational bottleneck in the fine-grained paral-
lelization is primarily twofold:

1) Since the computations associated with the gating tests
in processing candidate associations occur prior to in-
voking the IMM to obtain the assignment cost coeffi-
cients, the fine-grained parallelization (within the state
estimator) is unable to process these independent com-
putations in parallel, and

2) There is a large overhead cost corresponding to a sub-
stantial number of fork-join operations in computing
the assignment cost coefficients. Specifically, the fine-
grained parallelization suffers from a poor computa-
tion-to-communication ratio.

In the coarse-grained parallelization, the bottleneck is the
numerous serialized accesses to the shared task queue
when aquiring candidate associations to process.

6.2 Efficiency

In Fig. 7, we plot the parallel efficiency for both the coarse- and
fine-grained parallelizations of IMM-2D. Clearly, as Fig. 7 illus-
trates, the computational performance of the coarse-grained
parallelization is independent of the number of filter models used
in the IMM estimator, whereas the fine-grained parallelization
performs rather inefficiently unless the number of filter models
used is unrealistically high. Furthermore, as shown in Fig. 7,
near-unity efficiency, and, given a large enough problem (e.g.,
two processors using Mach 5 coarse gating policy), even greater
than unity efficiency (i.e., superlinear speedup) is possible. When
nonalgorithmic issues, such as context switches, effective mem-
ory size and access costs, and scheduling order, are considered,
superlinear speedups in practice may indeed occur [14], [17].

In Fig. 7, note the efficiency improvement for the fine-
grained parallelization as the number of filter models in the
IMM estimator increases (these results are consistent with
those in [3], [4]). However, in a real-time sense, these so-
called efficiency improvements are actually misleading. In
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Fig. 8, we plot the throughput (T;l) for the coarse-grained

and fine-grained parallelizations of IMM-2D. This plot may
be viewed as a measure of the real-time effectiveness (speed)
of IMM-2D in terms of the number of candidate associa-
tions processed per unit time. Clearly, as this plot demon-
strates, increasing the number of filter models in the IMM
estimator, and, hence, increasing the processing workload,
decreases the throughput of IMM-2D. However, what it
also shows is that, based on the flatness of its curve, a fine-
grained parallelization is no better in terms of throughput
when the IMM estimator is configured with many filter
models, than when configured with fewer models (i.e., it
does not get faster, even when it has less processing to do).
The coarse-grained parallelization, on the other hand, shows
significant improvement, in an absolute and relative sense, as

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 8, NO. 10, OCTOBER 1997

Instance (original)
........ Instance (+500%)
._._. Instance (+1500%) b

5 L I L L I I
0 2 4 6 8 10 12 14

# of Filter Models

Fig. 9. Scale-up of IMM-2D on a 12-processor SPARCcenter 2000 for
several problem instances. Horizontal axis denotes number of filter
models in IMM configuration.

the number of filter models in the IMM estimator decreases.
This is a rather important result given that in practical air
traffic surveillance problems, typically a small number of
filter models are necessary in the IMM estimator [15].

6.3 Scale-Up

Many factors determine the scale-up performance of a paral-
lel algorithm, in particular, the multiprocessor architecture
and the problem size are directly related. In the context of
multitarget tracking, the problem size is a function of numer-
ous factors, including the number of actual and false alarm
tracks, noise/ clutter intensity, target density, contentiousness
of the assignment problem, and the number of filter models
used in the IMM. When considering scalability, a highly de-
sirable goal would be for IMM-2D to have the ability to
maintain the same high level of performance (e.g., efficiency)
on larger multiprocessor systems as it did on smaller ones,
and do so in terms of any of the factors that can influence the
problem size. Certainly, IMM-2D having this property would
make it robust, and it could easily adapt, without modifica-
tion, to other diverse multitarget tracking problems.

Unlike the fine-grained parallelization, the coarse-
grained parallelization of IMM-2D scales when any of the
factors influencing problem size increase. In particular, in
Fig. 9, we plot the speedup for the coarse-grained paralleli-
zation on a 12-processor SPARCcenter 2000 for several
problem instances. In (Instance (original)), all factors influ-
encing the problem size are unchanged, whereas, in
(Instance (+500 percent)) and (Instance (+1,500 percent)), a
more dense multitarget scenario was simulated by increas-
ing the problem size (relative to (Instance (original))) in
terms of track set size by 500 percent and 1,500 percent,
respectively. From the plot, we can see marginal speedup
results when the problem size is small (i.e., (Instance
(original))) relative to the particular multiprocessor archi-
tecture. However, as the problem size increases, the scal-
ability of the coarse-grained parallelization is evident, ap-
proaching near linear speedup with fewer filter models,
and linear with many.
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Fig. 10. Augmented IMM estimator.

7 CONCLUSIONS

We have presented our investigation and evaluation of
various shared-memory parallelizations of the data asso-
ciation problem in multitarget tracking for general-
purpose shared-memory MIMD multiprocessor systems.
A sparse measurement database, based on two FAA air
traffic control radars, served as the data for our multitar-
get tracking problem. We showed that, for sparse multi-
target tracking problems, the assignment (or data asso-
ciation) problem is not the major computational bottle-
neck. Instead, the interface to the assignment problem,
namely, computing the rather numerous gating tests and
IMM state estimates, covariance calculations, and likeli-
hood function evaluations (used as cost coefficients in
the assignment problem), is the major source of the
workload. Because of the shortcomings associated with
previously proposed fine-grained parallelizations of the
IMM estimator in a multitarget tracking problem, we
proposed a scalable, robust coarse-grained paralleliza-
tion across tracks that has excellent performance. Ana-
lytically and empirically, we showed that the coarse-
grained parallelization has superior execution time per-
formance over the fine-grained parallelization for any
number of filter models used in the IMM estimator.
Furthermore, we showed that the coarse-grained paral-
lelization can realize superlinear speedups independent
of the number of filter models used in the IMM estima-
tor. On the other hand, the performance of the fine-
grained parallelization, being dependent on the number
of filter models used, yielded negligible throughput for
any number of filter models, marginal speedups when
many models were used, and worse execution time than
sequential time when three or less filter models were
used.

APPENDIX A
IMM STATE ESTIMATION

The IMM estimator used in IMM-2D [26], illustrated in
Fig. 10, is an augmented version of the standard IMM es-
timator [6]. As Fig. 10 depicts, the various computations
involved in one cycle of the IMM estimator can be divided
into:

1) interaction/mixing,

2) filtering,

3) update of mode and mixing probabilities, and

4) combination of mode-matched state estimates and
covariances.

The IMM assumes the motion of a target for which a cor-
responding track will develop follows one of r possible
filter models (or modes) between two successive detec-
tions. The augmented IMM estimator combines the likeli-
hoods A(), j=1, .., rfrom the individual mode-matched
filters to yield an overall likelihood A(-). We omit detailed
exposition of the IMM algorithm here, since it is not the
main focus of this paper, and simply present a brief sum-
mary of the relevant equations. We refer interested readers
to [26] for a more descriptive presentation of the material.
The mixed state estimate and covariance are given by

,
J%Of(tmkf) = z;fc"(t’"kq)#i‘j(t"’kq)

i=

(24)

Pt ) = S [l )= Sl i) = )]

.ui‘]'(t'nk,] ) + 2::1 I)i(tmk—1 )'ui‘]'(tmkfl ) (25)

The mixing probability is given by
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’ui(t"’ —1)
'ui\]’(t’"m) = ZV ,LL-Et )
i=1" I\ My

where 7; éP{u(t‘mk) = j|u(tmk71) = i} is the model transition
probability.
The mode probability is given by

i) - A Bl

The combined likelihood of the IMM estimator is given
by

(26)

(27)

(28)

A(m) = 2 i A (m (b,

j=1 i=1

and each filter model (mode) likelihood function is given
by

1 1
A]-(mk) = ‘ZESj(mk)‘ exp {—Eaj(mk)} (29)
where the normalized innovation squared is
’ -1
O‘j(mk) = V;‘(mk) [Sj(mk)] Vj(mk) (30)

and the measurement residual and residual covariance are

vj(mk) = z(mk) -H 1—"].(5,()320/.(1,‘,%1) (31)

’

S;(0me) = Rim) + H[lzf(5k)P0f(tmkl)1:j(5k) +
Gf(ék)Qj(ék)Gj(ék)/:lH’ (32)

where 6, =t, -t

My *

The updated state estimate and covariance are given by

2,(t, ) = F(8,)R0;(tn, )+ Wi(my v (my) (33)

Bt )= [0 1 (6 60050651

- V\/j(mk)sj(mk)w'(mk),

] (34)

where the filter gain is
W(m,.) = [Fj(ak)POj(tmk,1 Fj(ék)’
+Gj(5k)Qj(ék)Gj(Sk)I}H’[Sj(mk)]1 (35)

And, last, the combined state estimate and covariance are
given by
,

2t ) = 22, (1)

j=1

(36)
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