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Parallelization of a Multiple Model Multitarget
Tracking Algorithm with Superlinear Speedups

The interacting multiple model (IMM) estimator has

been shown to be very effective when applied to air traffic

surveillance problems. However, because of the additional filter

modules necessary to cover the possible target maneuvers,

the IMM estimator also imposes an increasing computational

burden. Hence, in an effort to design a real-time multiple

model multitarget tracking algorithm that is independent of the

number of modules used in the state estimator, we propose a

“coarse-grained” (dynamic) parallelization that is superior,

in terms of computational performance, to a “fine-grained”

(static) parallelization of the state estimator, while not sacrificing

tracking accuracy. In addition to having the potential of realizing

superlinear speedups, the proposed parallelization scales to larger

multiprocessor systems and is robust, i.e., it adapts to diverse

multitarget scenarios maintaining the same level of efficiency

given any one of numerous factors influencing the problem size.

We develop and demonstrate the dynamic parallelization on a

shared-memory MIMD multiprocessor for a civilian air traffic

surveillance problem using a measurement database based on two

FAA air traffic control radars.

I. INTRODUCTION

A. Motivation

Within the aerospace community, there is

increasing interest in applying parallel processing

techniques to computationally intensive problems

associated with ground-based, airborne, and

space-based surveillance [1—3, 6, 13, 15, 16]. In the

context of military and civilian air traffic surveillance,

real-time multisensor-multitarget tracking of airborne

targets is one such application. One of the primary
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advantages offered by a multiprocessing system is the

ability to exploit the processing capabilities of multiple

processors in parallel. Indeed, for dense multitarget

problems, parallel processing is often necessary

because of the limited computational performance

of tracking algorithms on conventional uniprocessor

systems [13—16].

In general, the objective of a tracking algorithm

is to detect and estimate, i.e., track, the states of

an unknown number of targets, in the presence

of spurious observations and occasional missed

detections, using sensor measurements of possibly

unknown origin and contaminated by noise and clutter.

The tracking performance of a tracking algorithm is

mainly governed by the accuracy of the state estimator

used. The traditional and most widely used state

estimator is the Kalman filter. However, because of

the single motion model assumption, when its design

parameters are tuned to track maneuvering targets

via increased process noise covariance, the Kalman

filter has been found to provide marginal tracking

performance [5, 10]. Alternatively, as demonstrated in

a companion paper [20], an interacting multiple model

(IMM) estimator [5] can yield a 30% reduction in the

RMS prediction error with RMS errors in altitude rate

estimates reduced by a factor of 3 over the Kalman

filter.

For many realistic multitarget air traffic

surveillance problems, a systematic estimator that

automatically adapts to each (maneuvering and/or

nonmaneuvering) target’s individual motion mode

is necessary. The IMM estimator has proven to be

very effective for such problems by allowing the

motion of targets to be described by different state

equations in different time intervals [10]. However, the

IMM estimator, because of the additional filters, also

imposes a higher computational burden than a Kalman
filter. In general air traffic surveillance problems,

a multiple model tracking algorithm should have a

reasonable number of filter modules to cover the

possible target maneuvers.1 However, to be practical

in a real-time environment, computation time needs

to be considered, since increasing the number of

filter modules increases the computational load of

the estimator considerably. To date, there has been

a lack of efficient parallelizations of multiple model

tracking algorithms reported in the literature that are

independent of the number of filter modules used in
the state estimator. Hence, filling this gap is one of the

primary focuses of the present work.

1Theoretically, in terms of tracking accuracy, it is as bad to use too

many filter modules as it is to use too few [11]. However, for higher

dimensional systems, where a large number of filter modules may

be necessary, a variable-structure estimator, where only a relatively
small fixed number of filter modules are active at any particular time,
proves to be an excellent alternative [11].

B. Related Research

A literature survey [2, 3, 8, 18] of parallel

algorithms developed for multitarget tracking problems

reveals a plethora of state estimator parallelizations

proposed over the years. However, in each of

these studies, “fine-grained” parallelizations were

primarily explored, wherein many numerically

intensive computations–coordinate transformations,

state and covariance estimates, linear algebraic

operations such as matrix multiplication, Cholesky

(square root) factorization, and inner products–were

parallelized. In particular, Atherton, et al. [2] and

Averbuch, et al. [3] each developed fine-grained

parallelizations of the IMM estimator, the former

on a 4-processor distributed-memory transputer, and

the latter, on a 4-processor shared-memory MIMD

multiprocessor. When using a fine-grained approach,

however, the parallelization is static (fixed) within
the state estimator. As we demonstrate in this work,

for an air traffic surveillance problem, fine-grained

parallelizations of a multiple model state estimator

prove to be inadequate, in terms of computational

performance, unless the number of filter modules

used is unrealistically high. The alternative that we

propose is a “coarse-grained” (dynamic) parallelization

across the numerous track states found in a multitarget
problem.

Current work documented in the literature [1, 13,

14, 17] tends to view the data association problem

as one of statistical estimation, wherein a set of

measurements received is associated with a set of

tracks and false alarms by an unknown random

permutation. In particular, Pattipati, et al. [13] describe

efficient mappings of multiple hypothesis tracking

(MHT) algorithms onto MIMD multiprocessors,

while Atherton, et al. [1] describe a parallelization of

a track-splitting algorithm for a distributed-memory

transputer. However, these enumerative approaches

require a search of a large number of hypothesized

permutations (feasible associations) to determine the

correctness of such hypotheses, with the complexity

increasing exponentially with the number of feasible

tracks. An alternative is to use an optimization-based

approach, wherein a state estimator, such as a

Kalman filter or the IMM, is embedded into an

assignment-based framework [15, 16, 19, 20]. In such

a formulation, the problem is that of finding an

optimal assignment of measurements from the latest

scan to the most likely tracks from the previous

scans using a global cost function, i.e., a maximum
likelihood (ML) criterion as opposed to a maximum
a posteriori (MAP) criterion as employed in MHT
algorithms. In such a formulation, any well-known

polynomial-time assignment algorithm [4, 7] can

be used in finding the optimal (minimum cost)

assignment.
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C. Scope

We begin by describing our multiple model

multitarget tracking algorithm in terms of an IMM

estimator embedded into the two-dimensional (2D)

assignment framework. In an effort to design a

real-time tracking algorithm that is independent
of the number of modules used in the state

estimator, we next describe our coarse-grained

(dynamic) parallelization for shared-memory MIMD

multiprocessor systems. In particular, we perform

the parallelization across the IMMs, enabling the
rather numerous gating, state estimates, covariance

calculations, and likelihood function evaluations (used

as costs in a global assignment) to be computed in

parallel. Moreover, the dynamic scheduling of these

computations also takes advantage of the fact that

they are not of equal size, and, thus, can schedule

them efficiently. In addition to being computationally

superior to a static parallelization of the state

estimator, the proposed parallelization realizes

superlinear speedups,2 scales to larger multitarget

problems, and is robust. We develop and demonstrate

the dynamic parallelization for a civilian air traffic

surveillance problem using a measurement database

based on two FAA air traffic control radars.

II. MULTITARGET TRACKING ALGORITHM

Since it is not the primary focus of this work, we

omit detailed exposition of the multitarget scenario

here. Instead, a brief description of the scenario is

included in Appendix A. However, we do provide a

brief explanation of our multitarget tracking algorithm

in terms of the state estimation problem (via the

IMM) embedded into the data association problem

(via a 2D assignment), which serve as the basis of our

tracking approach.

A. State Estimation

State estimation provides 1) a measure of how

likely a particular measurement from a given scan

originated from a particular target track, i.e., provides

a measurement-to-track association cost that we utilize
in the data association problem, and 2) an estimate

of the target state. In the state estimation problem,

we assume that the target state evolves according to

a known linear dynamic model, corrupted by process

noise, and driven by a known input, i.e.,

x(tmk )
¢
=F(±)x(tmk¡1) +G(±)v(tmk¡1) (1)

2When nonalgorithmic issues such as context switches, effective

memory size, memory access costs, and scheduling order are

considered, superlinear speedups in practice may indeed occur

[9, 12].

where ± = tmk ¡ tmk¡1 is the time interval, F(¢) is the
state transition matrix, G(¢) is the disturbance matrix,
and v(¢) is zero-mean, white Gaussian process noise
with (known) covariance matrix Q(¢). Moreover, the
measurements are linear functions of the target state

corrupted by measurement noise, i.e.,

z(tmk ,mk)
¢
=Hx(tmk ) +w(mk) (2)

where mk = 1, : : : ,M(k) denotes the mkth measurement
from the kth scan, H = [I 0 0] is the measurement
matrix, and w(¢) is zero-mean, white Gaussian
measurement noise with (known) covariance matrix
R(¢).
Recall, inherent to a multitarget air traffic

surveillance problem is uncertain target dynamics;

thus, a set of state equations modeling the motions

of such targets is necessary [5, 6]. Hence, in our

multitarget tracking algorithm, termed IMM-2D,

we use an IMM state estimator. Since it is not

the focus of the present work, we omit detailed

exposition of the IMM algorithm here and refer

interested readers to Bar-Shalom an Li [5, 6] for

a more descriptive presentation of the material.

However, what is important to know here is that,

in IMM-2D, the IMM estimator yields an overall

likelihood score, ¤(¢), which serves as the basis of a
candidate measurement-to-track association cost used

in the data association (assignment) problem [20].

B. Data Association

Data association is the decision process of linking
measurements (from successive scans) of a common

origin (i.e., a target or false alarms) such that each

measurement is associated with at most one origin.

In the IMM-2D tracking algorithm, we formulate

the data association problem as a 2D assignment

problem. Specifically, M(k) measurements from the

latest scan k are to be assigned to the N(k¡ 1) most
likely existing tracks from the previous scans using a

global cost minimization function [6] (based on the

likelihood functions ¤(¢) from the IMM estimators).

Specifically, let n= 0, : : : ,N(k¡ 1) denote a particular
track from the “set” of existing tracks (including a

dummy track n= 0), and mk = 0, : : : ,M(k) denote a
particular measurement from the latest “set” (scan)

of measurements (including a dummy measurement
mk = 0). Define the binary “assignment” variable

xnmk =

½
1 if mk is assigned ton

0 otherwise
: (3)

Note that xn0 = 1 implies that track n is unassigned
and has missed a detection at scan k. Furthermore,
x0mk = 1 implies that measurement mk is unassigned,
that is, not assigned to any of the N(k¡ 1) previously
established tracks; in IMM-2D, the set of new tracks

to initialize at scan k is fmk : x0mk = 1 8mkg. Since
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Fig. 1. IMM-2D block diagram and workload distribution.

measurement errors within a scan are independent

of each other, maximizing the likelihood function,

consisting of the joint probability density function

(pdf)-probability [6] of measurements given their

origins and the corresponding detection events, over

the set of feasible assignments can be cast into the

following 2D assignment problem:

min

N(k¡1)X

n=0

M(k)X

mk=0

xnmk cnmk

s.t.

M(k)X

mk=0

xnmk = 1 8 n

N(k¡1)X

n=0

xnmk = 1 8 mk

(4)

where the cost of assigning measurement mk to track n
is

cnmk =

8
>>><

>>>:

0 if n= 0 or mk = 0

¡ log
�
¤(n,mk)

¤(0,mk)

¶
if ¡ log(¢)< 0

1 otherwise

:

(5)

The numerator in ¡ log(¢) from (5), obtained from

the IMM state estimator [20], is the likelihood that

the mkth measurement at scan k originated from the

nth track, and the denominator is the likelihood that
the mkth measurement corresponds to none of the
existing tracks (i.e., a false alarm). The occurrence of

false alarms is assumed uniformly probable over the

sensor field of view.

III. IMM-2D PARALLELIZATION

A. Workload

As shown in the control-flow block diagram of

Fig. 1, besides data association and state estimation,
two ancillary tasks of the IMM-2D tracking

algorithm are obtaining scan measurements and track
formation/extension. In terms of workload distribution,
Fig. 1 clearly shows that the vast majority of the
workload per scan involves processing the “set” of
candidate associations in setting up the data association
(assignment) problem, i.e., this constitutes 94.3%,
94.7%, 95.2%, and 96% of the workload for an IMM
having 1, 2, 3, and 5 filter modules, respectively.
As illustrated in Fig. 1, because this portion of
the IMM-2D tracking algorithm is the significant
computational bottleneck, we focus on parallelizing
only this block.
In order to understand the components that

comprise the processing time, we now describe the
various operations that occur in this block. Define the
set of candidate associations at the kth scan by

C(k) ¢=f(n,mk) : (n,mk) 2N(k¡ 1)£M(k)g (6)

where N(k¡ 1)£M(k) denotes the cross product
of the track and measurement sets, with jC(k)j=
N(k¡ 1)M(k). For each (n,mk) 2 C(k), a coarse gating
test is first applied, consisting of both a “maximum
velocity” gate and a high process noise Kalman filter
“elliptical” gate,3 denoted by

Gc : C(k)!f0,1g (7)

where Gc(n,mk) = 1 denotes measurement mk fell
within both of the nth target’s maximum velocity
and elliptical gates, while Gc(n,mk) = 0 denotes
measurement mk fell outside either of track n’s gates.
Define the set of candidate associations passing the
coarse gating test Gc(¢) by

L(k) ¢=f(n,mk) : (n,mk) 2 C(k),Gc(n,mk) = 1g:

(8)

This set L(k) forms the set of candidate
measurement-to-track associations requiring the

3The elliptical gate is computed only if the measurement falls within

the maximum velocity gate of the target.
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Fig. 2. Shared-memory multiprocessor environment.

Fig. 3. Task graph of parallel computation.

computation of an association cost based on the

likelihood function ¤(¢), as specified in (5), from the

IMM estimator. Following evaluation of the likelihood

function, which, when performed, is the single most

costly operation in terms of processing time, a fine
gating test is applied, i.e.,

Gf : L(k)!f0,1g (9)

where Gf(n,mk) = 0 denotes that candidate association
(n,mk) is to be filtered out of the 2D assignment
problem because it is more likely that measurement

mk corresponds to a false alarm than to track n,
i.e., cnmk ¸ 0. Conversely, Gf(n,mk) = 1 denotes that
candidate association (n,mk) is to participate in the
2D assignment problem, with the cost of assigning

measurement mk to track n is cnmk < 0 as defined
in (5). With respect to the implementation of the

IMM-2D algorithm, the filtering out of unnecessary

candidate associations, via coarse gating Gc(¢) and fine
gating Gf(¢) of C(k) and L(k), respectively, serve as a
sparsification technique applied to the 2D assignment

problem.

B. Implementation Environment

The computing environment used in this

work consists of several shared-memory MIMD

multiprocessor systems, i.e., a 2-processor and

4-processor SPARCstation 20, and a 12-processor

SPARCcenter 2000. A simple model of the 4-processor

SPARCstation 20 architecture with corresponding

hardware specifications is illustrated in Fig. 2. The

other architectures (not illustrated) have comparable

hardware specifications. The software utilized consists

of Sun Microsystem’s Solaris 2.4.2 environment,

which includes the SunOS 5.4.2 Unix operating system

(kernel), SPARCworks 3.0.1 C compiler, and the

parallel processing interface via the multithreaded

system architecture.

While a traditional Unix process has always

contained a single thread of control, multithreading
separates a process into many independent, lightweight

threads, each of which executes (possibly concurrently)

a sequence of the process’s instructions. Two levels of

thread scheduling occurs in SunOS: application-level

threads are dispatched across a set of kernel supported

threads via a library-supported threads scheduler,

and kernel-level threads (i.e., lightweight processes)

are, in turn, dispatched across the processor set of

the multiprocessor via a kernel scheduler. Numerous

synchronization mechanisms are supported in SunOS

allowing threads to cooperate in accessing shared data.

C. Shared-Memory Parallelization

The coarse-grained parallelization of the

IMM-2D tracking algorithm is based on both

the supervisor/worker model and the use of a

homogeneous data partitioning strategy. Specifically,

per scan, multiple identical worker threads,

asynchronously and dynamically, perform the same

task–process measurement-to-track associations

(n,mk) 2 C(k)–across different track and measurement
data (mutually exclusive n and mk). Upon processing
all candidate associations by workers, the supervisor

thread solves the global data association (2D

assignment) problem. In contrast, a “strictly”

fine-grained parallelization of IMM-2D would

sequentially iterate over the set of candidate

associations, computing their corresponding association

costs in parallel. In Fig. 3, we provide a task graph of

the parallel computation illustrating the parallelization.

When the routine corresponding to setting up

the data association problem is called, a supervisor
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thread creates (forks) some number of worker threads

(based on a design parameter) to process C(k) and
waits for all newly created threads to terminate

prior to solving the 2D assignment problem. Each

worker thread will process some number of candidate

measurement-to-track associations per “serialized”

critical section access via the mutex lock mutex. For
each measurement-to-track association (n,mk), the
thread applies the coarse gating test Gc(¢), and, if
Gc(n,mk) = 1, the thread computes an association cost,
based on (5), and applies the fine gating test Gf(¢),
and, if Gf(n,mk) = 1, stores cnmk as input into the 2D
assignment problem. Conceptually, each worker thread

executes the pseudocode in IMM-2D( ) as described

below:

IMM-2D( )
for (; ;) /* forever */
lock(mutex)
task= get job( ) /* get tasksize (n,mk)’s */
unlock(mutex)
if task=Ø done( )

for each (n,mk) 2 task do
if Gc(n,mk) = 1 and Gf(n,mk) = 1
C[n,mk] = cnmk /* Eq. (5) */

IV. RESULTS

A. Preliminaries

In this section, based on the 2-processor and

4-processor SPARCstation 20, we demonstrate

the computational performance of IMM-2D

tracking algorithm. We present performance results

for IMM-2D via the proposed coarse-grained

parallelization and using a fine-grained parallelization

of the IMM estimator, wherein the multiple filter

modules are evenly distributed across the processor

set in the multiprocessor. The results are based on a

(relatively sparse) multitarget air traffic surveillance

problem, as described in Appendix A, using data

from two FAA air traffic control radars, courtesy of

Rome Laboratory. To get some sense of the data,

in Fig. 4, we plot as a function of the scan number,

post mortem, the number of tracks, number of

measurements in the scan, the size of the candidate

association set jC(k)j, and, based on various coarse
gating policies,4 the size of the set jL(k)j of candidate
measurement-to-track associations requiring the

computation of an association cost based on the

likelihood function ¤(¢), as specified in (5), from the

IMM estimator.

Note that, even for this relatively sparse problem,

hundreds of candidate associations, per scan, require

4Even though unrealistic for the civilian air traffic surveillance

problem at hand, a Mach 5 gate was used only to illustrate other

computational aspects of the IMM-2D parallelization in the sequel.

Fig. 4. Comparison of various scan statistics.

a likelihood function evaluation. The reason for this is

because we chose to keep a track for up to 100 s with

no measurements before discarding it, i.e., a track is

dropped if unassigned in the 2D assignment problem

across 20 consecutive scans. Consequently, such

“mature” tracks will have “large” gates [15, 16] with

many candidate measurements to associate with, which,

however, might go to other tracks. Indeed, many of

the 300+ tracks that exist from scan 20 onwards are

tracks initiated based on false alarms, which, in turn,

get discarded in future scans; roughly 75 actual targets

are tracked in the measurement database.

B. Execution Time and Parallel Efficiency

Since the multiprocessors used in this work

are time-shared systems, the execution times of

IMM-2D depended, in part, on random system

events such as the system load and thread schedule

order. Consequently, Monte Carlo simulations were

performed, and all results presented represent the

means of those simulations with standard errors less

than 3%. In Fig. 5, we plot the execution times of

the sequential, the proposed coarse-grained, and

the fine-grained parallelizations of IMM-2D based

on the 2-processor and 4-processor SPARCstation

20 using various coarse gating policies. Clearly,

the coarse-grained approach demonstrates superior

execution time performance, independent of the

number of filter modules used in the IMM estimator,

over the fine-grained approach. Furthermore, even

though the fine-grained parallelization does show

improvement in execution time over sequential

time, it does so only for an IMM estimator having a

large number of filter modules. In fact, for an IMM

estimator having a small to moderate number of filter

modules (3 or less), the fine-grained parallelization

has greater execution time than sequential time.
The primary overhead in using this approach is a

substantial number of fork-join costs relevant to

the computation performed (i.e., an association
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Fig. 5. Execution time versus number of motion models in IMM for various number of processors and coarse grating policies.

cost), whereas the coarse-grained approach suffers
from numerous less intensive serialized accesses to
the shared task queue when processing candidate
associations in setting up the data association problem.
In Fig. 6 we plot the parallel efficiency, based on a

conventional formulation, for both the coarse-grained
and fine-grained parallelizations of IMM-2D, i.e.,

Eff =
¿1
p¿p

(10)

where ¿1 denotes the sequential execution time
of IMM-2D utilizing 1 processor, and ¿p denotes
the parallel execution time utilizing p processors.
Clearly, in terms of efficiency, the coarse-grained
parallelization is superior to the fine-grained
parallelization for any number of filter modules
used in the IMM estimator. Moreover, as Fig. 6
illustrates, the computational performance of the
coarse-grained parallelization is independent of the
number of filter modules used in the IMM estimator,
whereas the fine-grained parallelization performs
rather inefficiently unless the number of filter modules
used is unrealistically high. Furthermore, near-unity
efficiency, and, given a large enough problem size
(e.g., 2 processors using Mach 5 coarse gating
policy), greater than unity efficiency, which implies
superlinear speedup, is possible via the coarse-grained
parallelization.

C. Robustness and Scaling

Many factors determine the performance of a
parallel algorithm, in particular, the multiprocessor

Fig. 6. Parallelization efficiency versus number of motion models

in IMM for various coarse grating policies.

architecture and the problem size are directly related.
In the context of a multitarget air traffic surveillance
problem, the problem size is a function of multiple
factors: whether or not the track corresponds to an
actual target or a false alarm, noise intensity, degree of
clutter, target density in the neighborhood of a tracked
target, and the computation size of the association cost
itself (i.e., increases in the number of filter modules).
When considering the scalability of a multitarget
tracking algorithm for larger multiprocessor systems,
a highly desirable feature is when the algorithm can
maintain the same “high” level of performance (e.g.,
speedup) on the larger multiprocessor system as it did
on the smaller one, and do so in terms of any of the
factors that can influence the problem size. Certainly,
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Fig. 7. Speedup versus number of motion models in IMM using

Mach 5 coarse grating policy.

a multitarget tracking algorithm having this attribute

would be considered robust, and could easily adapt,
without modification, to diverse multitarget problems.

The coarse-grained parallelization of IMM-2D

scales when any of the factors influencing problem

size increase, i.e., we are able to maintain “roughly”

the same level of performance across a larger

multiprocessor system as we are able to on a

smaller one. In Fig. 7, we plot the speedup for the

coarse-grained parallelization on a 12-processor

SPARCcenter 2000 for several problem instances.

In (Instance (original)), all factors influencing the
problem size are unchanged. From the plot we can

see marginal speedup results when the number of

filter modules in the IMM estimator is small. This

indicates that the problem size is too small for the

particular multiprocessor architecture. However, as

the number of filter modules in the IMM estimator

increases, implying that the problem size increases,

clearly the speedup increases to near linear. In

(Instance (+500%)), we simulated a more dense
multitarget scenario by increasing the problem size

(relative to (Instance (original))) in terms of track set
size by 500%. Clearly, we see the robustness of the

coarse-grained parallelization where, again, the plot is

approaching linear speedup when fewer filter modules

are in the IMM estimator, and linear when many filter

modules are used. And lastly, (Instance (+1500%))
increases the problem size 1500% by increasing the

track set, per scan, by the same amount, and clearly

we can obtain even better speedup performance than

in the previous two cases.

D. When to Parallelize?

In the case of single target tracking, the

parallelization of a multiple model state estimator

would be, by necessity, fine grained (static), and,

as demonstrated in this work and [15], extremely

inefficient unless the number of filter modules

used is unrealistically high. Indeed, for an IMM

estimator having a small to moderate number of filter

modules, the fine-grained parallelization has worse

execution time performance than sequential time

(recall Fig. 5). When using an IMM configured with

12 filter modules, Averbuch, et al. [3] demonstrated

that efficiency with p processors is roughly 1¡p¡1
for small p, and, as shown here, comparable with
our results. However, to expect an improvement for

larger p would by necessity require using many filters
and larger state and measurement vectors [3]. Hence,

one should not waste time trying to parallelize a

single target “small” multiple model state estimator

on a general-purpose shared-memory multiprocessor;

however, a fine-grained parallelization on an ASIC

chip could be made efficient.

In the multitarget situation, based on our

results, we suggest that fine-grained state estimator

parallelizations should be used with caution. However,

a coarse-grained parallelization across IMMs is a good

strategy when any of the factors influencing problem

size is large, i.e., many models in the IMM, large

track/scan set sizes, or many candidate associations

requiring a likelihood function evaluation because of

clutter, dense scenarios, and/or coarse gating policies.

For example, note that in Fig. 6, even for our relatively

sparse air traffic surveillance problem based on an

average of 300 tracks and 50 measurements per scan,

when using a Kalman filter (e.g., IMM configured with

1 filter module) with a fairly tight coarse gating policy

(e.g., Mach 2), roughly 85% efficiency was obtainable

in a coarse-grained parallelization where only 500

likelihood function evaluations were computed, on

average.

Hence, a rule of thumb for when a coarse-grained

parallelization across IMMs is efficient (¸ 80%) in a
multitarget case is when

(# fine gate associations)£ (# modules in IMM)
# processors

¸ 250:

Similarly, the fine-grained parallelization within IMMs,
which does not depend on the number of fine gate

associations, becomes efficient (¸ 80%) if
# modules in IMM

# processors
¸ 4:

V. CONCLUSIONS

We have proposed a robust, scalable,

coarse-grained (dynamic) parallelization of a multiple

model multitarget tracking algorithm that realizes

superlinear speedups on shared-memory MIMD

multiprocessors. The advantage of the dynamic

parallelization presented here shows up in a reasonably

large multitarget problem where hundreds of candidate

measurement-to-track associations must be processed;
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TABLE I

Radar Specifications

fp ¯t ¯Á ¿ Rmax = c=2fp ¢r = c¿=2

Rem 340 Hz 5:4± 1:3± 6 ¹s 441.2 km 0.9 km

Dan 350 Hz 3:75± 1:2± 1:8 ¹s 428.6 km 0.27 km

indeed, the parallelization cannot be efficiently

utilized in the case of a single target tracking problem

which is inherently static. In this case, however, the

fine-grained parallelization is extremely inefficient,

unless the number of filter modules used in the

estimator is unrealistically high. We demonstrated

the computational superiority of the proposed

parallelization over the static parallelization via

several performance measures utilizing a measurement

database based on two FAA air traffic control radars.

APPENDIX A. AIR TRAFFIC SURVEILLANCE
PROBLEM

Important aspects of the raw scan measurement

database and the sensor model are as follows.

1) The data consist of scans from two L-band

FAA radars located at Remsen and Dansville,

NY. The databases used consist of 55 scans

(26 Remsen, 29 Dansville) and 210 scans (98 Remsen,

112 Dansville).

2) The data from the two FAA radars consists of

scans at approximately every 10 s. Each of these scans

contains a number of primary radar or skin returns.
Each of these skin returns consists of a time stamp,

a slant range, and azimuth angle measurements. For

cooperative targets, a secondary or beacon return is
also obtained, which provides, in addition to the above,

a target identification number (ID or squawk) and a

target altitude measurement.

3) The observability of the target state requires a

full measurement of its position. Only beacon returns

provide a measurement of the full target position.

4) Skin returns provide only a partial measurement

of the target state. In an effort to treat skin returns

similarly to beacon returns, we augment the former

with an “estimated” altitude measurement for

noncooperative targets. These are used only for
coordinate transformations from sensor polar to target

local coordinates. See [20] for details relating to the

incorporation of skin returns into our algorithmic

framework.

The sensor parameters for the radars are given

in Table I, where fp is the pulse repetition frequency,
¯t is the vertical beamwidth, ¯Á is the horizontal
beamwidth, ¿ is the pulse width, Rmax is the maximum
range, ¢r is the range resolution cell, and c is the
speed of light. From the above sensor parameters, the

range and azimuth standard deviations (i.e., ¾r and ¾Á,

respectively) are determined using the assumption that

the range and azimuth measurements are uniformly

distributed in the corresponding resolution cells.

Hence, ¾r =¢r=2
p
3 and ¾Á = ¯Á=2

p
3. The altitude

standard deviation ¾h = 17:6 m and the probability

of detection PD = 0:95 are chosen based on FAA
standards [19, 20]. We assume that the pdf of the

location of extraneous measurements (false alarms)

is uniform in the validation gate of the track under

consideration [6]. Hence, the pdf of an extraneous

measurement is the inverse of the gate volume,

denoted by ª . We assume that ª is approximately

constant and proportional to the resolution cell

volume, i.e., ª =K(¢r)(Rmax¯t)(Rmax¯Á). The factor

K (e.g., 33 = 27) is needed since the gate is, in general,

“spread” over several adjoining resolution cells.
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Autocorrelation Sidelobe Considerations in the
Characterization of Multipath Errors

The effects of autocorrelation sidelobes on multipath errors in

pseudorandom noise (PRN) ranging systems are investigated. It is

shown that both medium-delay (i.e., on the order of 1 PRN chip)

as well as long-delay multipath errors are affected. Results are

applied to the case of the Global Positioning System (GPS).

I. INTRODUCTION

Satellite-based pseudorandom noise (PRN) ranging

systems such as the Navigation Satellite Timing And

Ranging Global Positioning System (NAVSTAR

GPS) are subject to a variety of error sources [1].

Augmentations such as differential operation help to

reduce or eliminate many of these errors [1]. However,

multipath remains the dominant error source in most

high precision applications [2].

Multipath effects in PRN ranging systems have

been under study for over two decades [2—14].

In virtually every study, however, the effects of

autocorrelation function sidelobes are neglected. Van

Nee [14] touched briefly on the subject but stopped

short of performing a full characterization.

This article derives the bounds on multipath error

in terms of a more representative autocorrelation

function. The results show a distinct change in

the error envelope from that which has been

derived previously using a simplified model for

the autocorrelation function. In Section II, a brief

overview of the characteristics of the PRN code

autocorrelation function (including sidelobes) is

given and the impact on the delay-lock loop (DLL)

discriminator function is derived. In Section III, a

general description of multipath error is derived in

terms of the new parameterization. This quantifies

the influence of sidelobe levels on receiver tracking

error due to multipath. Section IV applies the results

of Section III to the case of the Global Positioning

System (GPS).

II. PRN CODE AUTOCORRELATION SIDELOBES
AND THE DELAY-LOCK LOOP DISCRIMINATOR
FUNCTION

In order to lay the groundwork for the multipath

development, a brief description of the autocorrelation
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