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In this paper we describe a novel data association
algorithm, termed m-best S-D, that determines in O(mSkn3)
time (m assignments, S ¸ 3 lists of size n, k relaxations) the
(approximately) m-best solutions to an S-D assignment problem.
The m-best S-D algorithm is applicable to tracking problems
where either the sensors are synchronized or the sensors and/or
the targets are very slow moving. The significance of this work is
that the m-best S-D assignment algorithm (in a sliding window
mode) can provide for an efficient implementation of a suboptimal
multiple hypothesis tracking (MHT) algorithm by obviating the
need for a brute force enumeration of an exponential number of
joint hypotheses.
We first describe the general problem for which the m-best

S-D applies. Specifically, given line of sight (LOS) (i.e., incomplete
position) measurements from S sensors, sets of complete position
measurements are extracted, namely, the 1st,2nd, : : : ,mth
best (in terms of likelihood) sets of composite measurements
are determined by solving a static S-D assignment problem.
Utilizing the joint likelihood functions used to determine the
m-best S-D assignment solutions, the composite measurements
are then quantified with a probability of being correct using
a JPDA-like (joint probabilistic data association) technique.
Lists of composite measurements from successive scans, along
with their corresponding probabilities, are used in turn with
a state estimator in a dynamic 2-D assignment algorithm to
estimate the states of moving targets over time. The dynamic
assignment cost coefficients are based on a likelihood function
that incorporates the “true” composite measurement probabilities
obtained from the (static) m-best S-D assignment solutions. We
demonstrate the merits of the m-best S-D algorithm by applying
it to a simulated multitarget passive sensor track formation and
maintenance problem, consisting of multiple time samples of LOS
measurements originating from multiple (S = 7) synchronized
high frequency direction finding sensors.
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I. INTRODUCTION

A. Motivation

The problem of data association, namely,
partitioning measurements across lists (e.g.,
sensor scans) into tracks and false alarms so that
accurate estimates of true tracks can be recovered,
has been extensively studied for many years. A
probabilistic interpretation is typically given to
the data association problem. Consequently, the
assignment of measurements to tracks and false alarms
is often done in a variety of ways. For multitarget
tracking problems, a literature survey shows
numerous well-known approaches proposed over
the years, e.g., (in order of decreasing complexity)
multiple hypothesis tracking (MHT) [5, 22, 43],
multidimensional S-D (S ¸ 3)1 assignment [15, 16,
29, 30, 34, 35, 36, 37, 31], joint probabilistic data
association (JPDA) [5], and two-dimensional (2-D)
assignment (single scan processing) algorithms [1, 3,
6, 17, 20, 38—40].
Data association becomes especially difficult if

the sensors are passive and measure line of sight
(LOS) angles only for the targets. Measurements
from multiple scans (S ¸ 3) have to be associated to
determine the estimates of target states, leading to a
combinatorial explosion of the problem. Historically,
the MHT algorithm has been considered to be the
only approach that can truly provide an optimal data
association solution. However, its practicality and
feasibility have been hampered since it requires an
enumeration of an exponentially increasing number
of feasible joint association hypotheses to evaluate
probabilities. Typically this is done within a time
window and on a pruned set to limit its otherwise
exploding computational requirements.
Data association using a multidimensional

assignment algorithm such as S-D assignment [15,
16, 29, 30, 34—37] has been shown to be a practical
and feasible alternative to MHT. S-D assignment is a
discrete mathematical optimization formulation of the
data association problem that systematically resembles
an MHT within a window of length (S¡ 1). However,
the main challenge to overcome in the S-D assignment
problem is that of solving the ensuing NP-hard
multidimensional assignment problem [31, 32]. In
particular, an algorithm that determines the optimal
solution is not only arduous, but also impractical for
even fairly small sized problems, e.g., unsatisfactory
results were reported for a problem as small as 10
targets and 3 scans in a dense scenario [30]. However,
satisfactory tracking and computational performance

1For simplicity, unless otherwise stated, assume (S ¸ 3) in all
references to S-D.
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can be realized utilizing existing S-D assignment
algorithms that provide good suboptimal solutions, of
quantifiable accuracy, and in pseudo-polynomial time
[15, 16, 29, 30, 34—37].
In recent years, there has been considerable

interest in an efficient and robust approach to
data association based on an m-best assignment
formulation [9—12, 28, 44]. With an appropriate
modification of a cost matrix and by solving a
series of modified copies of the initial problem,
an algorithm, first due to Murty [27], can be used
to find the m-best (ranked) solutions to not only
the data association problem, but, in general, to
many other classical optimization problems as well.
However, in the context of the S-D assignment
problem, determining the m-best solutions is more
accurately stated as one of finding the m-best
“approximate” solutions; finding the optimal
solution to the S-D assignment problem is not
feasible because it is NP-hard, consequently, finding
suboptimal solutions, of quantifiable accuracy and
in pseudo-polynomial time, is the only feasible
alternative. Determining m-best solutions (as opposed
to only the best one) becomes especially important for
assignment-based approaches to data association since
the hard irrevocable decisions that such approaches
make can be mitigated via the m-best assignment
formalism.

B. Related Research

The S-D assignment formulation of the data
association problem is NP-hard for S ¸ 3 even
under the assumption of unity detection probability
and no spurious measurements [19]. Thus, optimal
solution techniques, based for example on branch
and bound strategies for the set packing problem
[26, 32], requiring unacceptably long times for 10
or more targets, are of little practical value [30].
There is a wide range of algorithms that can be
used to construct suboptimal solutions to NP-hard
combinatorial optimization problems. These include
greedy heuristics, tabu search, simulated annealing,
genetic algorithms, neural networks, and Lagrangian
relaxation. The heuristic techniques with large
data association errors are of little or no utility.
For example, we showed in [16] that the greedy
row-column heuristics can lead to data association
error as high as 74%. Balas and Saltzman [2]
developed greedy algorithms (diagonal, greedy,
reduced cost, and max regret) along with a local
search based on variable depth exchange. They
conclude that the max regret method with variable
depth exchange is a fast and quality suboptimal
solution. In the context of multidimensional data
association, Poore and Robertson [37] show that the
max regret algorithms can, on the average, be off
by as much as 15—68% from the optimal solutions.

A customized greedy algorithm based on greedy
randomized adaptive search procedure, termed
GRASP [18, 23], had similar performance. Based on
our preliminary (unpublished yet) studies, methods
based on simulated annealing, genetic algorithms and
neural networks are unlikely to be useful in real-time
tracking situations.
Lagrangian relaxation-based methods have been

found to perform well in tracking applications [15,
16, 21, 29—31, 34—37]. An advantage of this class of
methods is that they provide both lower and upper
bounds on the optimal solution and the difference
between these bounds, termed the approximate duality
gap, provides a measure of solution quality. Typical
approximate duality gaps are in the 1—2% range. In
the following, we present a relaxation algorithm that
solves the S-D assignment problem as a sequence of
relaxed subproblems.
Although the S-D assignment problem [1, 32] is

NP-hard for S ¸ 3, there exist techniques to solve the
2-D assignment algorithm in O(n3) time as discussed
earlier. In [30], a 3-D assignment problem was solved
as a series of 2-D subproblems, by relaxing the
third constraint and appending it to the cost function
using Lagrange multipliers. This resulted in a 2-D
relaxed subproblem, which is easier to solve. The
(relaxed) constraint is then reimposed to obtain a
feasible solution that satisfies all the constraints. If
this solution is suboptimal, the Lagrange multipliers
(dual variables) are updated to penalize constraint
violations, and the above process repeated. Thus, a
hard constraint is transformed into a cost penalty.
However, when S ¸ 4, multiple sets of constraints

have to be relaxed. This can be accomplished in
several ways.
In the method used by Poore, et al., [34] the

constraints are relaxed one set at a time. Thus, the
S-D problem is solved via Lagrangian relaxation
by relaxing a set of constraints associated with the
Sth list, solving the resulting S¡1 dimensional
subproblem iteratively and then reconstructing a
feasible solution to the original S-D problem. The
key requirement of the relaxation method is that
the subproblem be optimally solvable, so that the
approximate duality gap is guaranteed to be positive.
This ensures that the reduced dimensional problem
is a lower bound to the original problem. However,
the (S¡ 1) dimensional subproblem is not optimally
solvable in polynomial time if S ¸ 4 (i.e., S¡ 1¸ 3).
Poore’s approach makes extensive use of partitioning
techniques to break up the graph into smaller disjoint
subgraphs, so that a Branch and Bound algorithm
(which has nonpolynomial complexity) can be used
to solve the (S¡ 1) dimensional subproblem optimally
[34—36]. The approach has been successful for sparse
graphs with minimal contention for measurements.
However, it will take unacceptable computational
resources for graphs that cannot be decomposed
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easily, such as the example considered here. For
denser graphs, Poore suggests the use of a “merit
function” [35] to address this difficulty. More recently,
Poore [37] proposed a technique, which is similar in
spirit to [13, 14, 16], of relaxing an S-D assignment
problem to a 2-D one, optimizing with respect to the
multipliers, and then recovering the feasible solution
as an S¡ 1 dimensional problem. This procedure is
repeated until one reaches a 2-D recovery problem,
which is solved optimally in polynomial time.
We adopt the approach developed by Pattipati

and Deb [15, 16, 29, 30] of relaxing all the (S¡ 2)D
constraints simultaneously. The relaxed subproblem
is then a 2-D assignment problem that can be
optimally solved in pseudo-polynomial time. The
challenge in this approach is to update the Lagrangian
multipliers associated with the multiple constraint sets
simultaneously for faster convergence. In [16], a novel
and pseudo-polynomial time algorithm (irrespective
of the sparsity of the graph) is presented where each
constraint set is updated individually (via successive
relaxation and constraint enforcement). The S-D
assignment algorithm (similar in spirit to S¡ 1 scan
approximation widely used in MHT algorithm)
extends naturally to tracking [5, 15, 16, 34, 35].
For research pertaining to m-best algorithms,

Murty [27] was the first to recognize the utility of
calculating not only the best (optimal) solution,
but also the 2nd, 3rd, and, in general, the mth
best solution to the 2-D assignment problem and
various other classical optimization problems.
Miller, et al. [25] proposed several optimizations
to Murty’s m-best 2-D assignment algorithm that
substantially reduced its complexity from O(mn4)
to O(mn3). For applications to multitarget tracking,
Cox, et al. [10, 11] and Danchick, et al. [12] each
proposed an m-best 2-D assignment algorithm.
Nagarajan, et al. [28] and Brogan [9] separately
presented similar branch-and-bound algorithms to
determine the m-best 2-D assignments; however,
their approaches were computationally inefficient
and made no guarantee that the m-best assignments
would indeed be determined. In [41], we developed
several improvements to Cox’s and Danchick’s
version of m-best 2-D, including: 1) a nonintrusive
dynamic switching scheme between two different 2-D
assignment algorithms, each highly suited for sparse
and dense problems, respectively, and 2) a multilevel
parallelization of the data association interface and
m-best partitioning processes, respectively.
For data association problems, the manner in

which the m-best solutions are processed allows
for several data association approaches to be
approximated [9—12, 28, 41, 42, 44]. Recent research
has suggested that efficient MHT and JPDA solutions
can be obtained when using an m-best 2-D assignment
formulation of the data association problem [10—12].
However, because it lacks the time depth in lists

(sensor scans) processed, i.e., 1 list processed at a
time, an m-best 2-D algorithm is only a special case
(1-scan) approximation of an MHT. However, a
(1-scan) JPDA can be approximated using an m-best
2-D assignment algorithm. Alternatively, an m-best
S-D, as proposed in this work, processes over S
lists and is, in the authors’ view, the correct way to
approximate an (S¡ 1)-scan MHT in the assignment
framework. Moreover, an m-best 2-D is subsumed by
an m-best S-D assignment algorithm.

C. Scope and Organization of Paper

The focus of this work is to describe the m-best
S-D assignment algorithm and apply it to a track
formation and maintenance passive sensor multitarget
tracking problem. It should be noted that the m-best
S-D assignment algorithm developed in this work
is applicable to tracking problems where either the
sensors are synchronized or the sensors and/or the
targets are very slow moving.
Summarizing the algorithm, initially the m-best

solutions to each of the different static S-D assignment
problems are determined (in parallel) based on
multiple time samples of measurements (direction
of arrivals or LOS angles, i.e., incomplete position
measurements) from S sensors. With imperfect
detection probability (· 0:9) and low measurement
accuracy (¼ 2± standard deviation), measurements
from S sensors are to be associated to obtain
composite measurements (i.e., complete target
positions). For each of the derived composite
measurements, JPDA-like probabilities that they
represent true measurements are calculated. A series
of dynamic 2-D assignment problems is then solved to
track the motions of the targets across time using the
composite measurement lists. In the 2-D assignment
problem formulation, we assume nearly constant
velocity motion for the targets, and subsequently use a
Kalman filter (KF) for the state estimation problem.
The likelihood function used to determine cost
coefficients for the dynamic 2-D assignments utilizes
the “true composite measurement probabilities”
obtained from the (static) m-best S-D assignment
solution.
In Section II we formulate the problem as just

discussed. In Section III we describe the proposed
m-best S-D assignment algorithm solution to the
problem formulation. Section IV describes an
efficient parallelization of the m-best S-D assignment
algorithm, while Section V describes results of m-best
S-D on a 7 sensor LOS problem. Section VI provides
concluding remarks.

II. PROBLEM FORMULATION

In this section, we provide discussions for the
following three subproblems: 1) the S-D assignment
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problem (a prelude to the next), 2) the m-best S-D
assignment problem (used for track formation and
generation of the composite measurements for track
maintenance), and 3) the dynamic 2-D assignment
problem for track maintenance.

A. S-D Assignment Problem

For the (static) S-D assignment problem2

considered in this work, we are given S scans (lists)
of measurements from NS sensors monitoring a
surveillance region, each with a number of detections,
and not necessarily equal to the number of actual
targets. In the present problem, S =NS , i.e., there
is one scan from each sensor, with all the time
stamps identical within a scan (t) and the sensors
are assumed synchronized (a reasonable assumption
for the direction finders problem). The objective is
to detect and localize an unknown number of targets
by estimating their positions only using the S lists
of measurements. The sensors in the surveillance
region provide scans of detections at discrete time
samples t= 1, : : : ,T. With each detection, there is
an associated measurement, e.g., azimuth angle, or
azimuth and elevation angles, depending on whether
the sensor provides azimuth only or azimuth and
elevation angles, respectively.
For each S-D assignment problem, we wish

to associate the observations from S lists of ns
measurements obtained at time instant t,s= 1,2, : : :S.
Let the position of sensor s at t be ys (for simplicity,
the sensors are assumed fixed; otherwise, ys = ys(t)).
The unknown position of target p is xp at time t
(omitted here for simplicity). The measurement zsis ,
is = 1,2, : : :ns, (at time t) either originated from a
true target p, in which case it is H(xp,ysis) plus some
additive white Gaussian noise N (0,§s), or from
some spurious source, in which case it is uniformly
distributed within the field of view of sensor s.
In addition, each sensor s has a known nonunity
detection probability PDs .
Our goal is to identify (localize) the targets by

providing estimates of their positions at time t.
A generalized likelihood ratio which involves the
target state estimates for the candidate associations
is used to assign costs to each feasible S-tuple of
measurements (candidate association) [5], and then an
S-D assignment algorithm is used to globally minimize
the cost. As mentioned before, a target may not be
detected at every scan. To simplify the notation for
incomplete measurement-to-target associations caused
by missed detections, we add dummy measurements
zs0 to each list. A dummy measurement from list s

2The more accurate notation would be the S-D (t) assignment
problem since we determine the m-best solutions to t = 1, : : : ,T
static S-D assignment problems. However, we use the simpler
notation to avoid unnecessary clutter.

assigned to target p implies that this target was not
detected by sensor s. The likelihood that an S-tuple of
measurements Zi1i2:::iS , originated from target p, with
the known state xp at some instant t, is

¤(Zi1i2:::iS j p) =
SY

s=1

f[1¡PDs]
1¡u(is)[PDsp(zsis j xp)]

u(is)g

(1)

where u(is) is an indicator function, i.e.,

u(is) =
½
0 if is = 0

1 otherwise
: (2)

The likelihood that the measurements are all spurious
or unrelated to this target, i.e., p=Ø, is

¤(Zi1i2:::iS j p=Ø) =
SY

s=1

·
1
ªs

¸u(is)
(3)

where ªs is the volume
3 of the field of view of sensor

s. The cost of associating the S-tuple to target p is
given by the negative log-likelihood ratio4

ci1i2:::iS =¡ ln
¤(Zi1i2:::iS j p)

¤(Zi1i2:::iS j p=Ø)
: (4)

However, xp in (1) is unknown, and, hence, will be
replaced by its maximum likelihood (ML) estimate,
i.e.,

x̂p = arg maxxp
¤(Zi1i2:::iS j p) (5)

which makes (4) into a generalized likelihood
ratio. Substituting (1) and (5) in (4), the cost of the
candidate association of the S-tuple of measurements
(i1, i2, : : : , iS) to a target is

ci1i2:::iS =
SX

s=1

(
[u(is)¡ 1] ln(1¡PDs)

¡u(is) ln
µ

PDsªs
j2¼§sj1=2

¶
+u(is)

£ ( 12 [zsis ¡H(x̂p,ysis)]
T§¡1s

£ [zsis ¡H(x̂p,ysis)])
)
: (6)

Note we do not use a sensor-specific false alarm
rate in the negative likelihood expression. Our goal
is to find the most likely set of S-tuples such that
each measurement is assigned to one and only one
target, or declared false, and each target receives

3If the false alarm probability is zero, ªs is the volume of the field
of view of sensor s or some scaled version of it. Using a uniform
pdf amounts to a scaling of the likelihood ratio and, hence, its exact
value is not relevant to the maximization.
4Since the likelihood function (LF), being a pdf, has a physical
dimension, one cannot compare for example the LF of 2
measurements with the LF of 3 measurements. Such a comparison
is possible only by using likelihood ratios, since they are
dimensionless quantities [5].
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at most one measurement from each list. This can
be reformulated as the following (generalized) S-D
assignment problem, i.e.,

min
½i1 i2 :::iS

n1X

i1=0

n2X

i2=0

¢ ¢ ¢
nSX

iS=0

ci1i2:::iS ½i1i2:::iS (7)

subject to:
n2X

i2=0

¢ ¢ ¢
nSX

iS=0

½i1i2:::iS = 1, i1 = 1,2, : : : ,n1

n1X

i1=0

n3X

i3=0

¢ ¢ ¢
nSX

iS=0

½i1i2:::iS = 1, i2 = 1,2, : : : ,n2

...
...

...

n1X

i1=0

¢ ¢ ¢
nS¡1X

iS¡1=0

½i1i2:::iS = 1, iS = 1,2, : : : ,nS

where, f½i1i2:::iSg are binary association variables such
that ½i1i2 :::iS = 1 if the S-tuple Zi1i2 :::iS is associated with
a candidate target. Otherwise, it is set to zero.
Note that there are no constraints placed on the

dummy measurements. Hence, this is a generalized
S-D assignment problem. In addition, through the use
of the dummy measurements, the association is now
performed over sets of complete S-tuples. Thus, if a
target was missed in list s, the corresponding S-tuple
has is = 0. However, a candidate target requires a
minimum number of true (nondummy) measurements.
This is discussed in more detail in Section V.

B. m-best S-D Assignment Problem

For the m-best S-D assignment problem considered
in this work, we wish to determine the m-best
solutions to a given static S-D assignment problem as
just described. To determine the m-best assignments,
we determine and rank (in polynomial time) the S-D
assignment problem solutions in order of increasing
cost. The manner in which this is done is by utilizing
a generalized form of Murty’s m-best 2-D assignment
partitioning process [27].
Recall that each static S-D assignment problem

consisted of S lists with ns measurements in list
s= 1, : : : ,S. For the m-best S-D assignment problem,
let us denote each static S-D assignment problem,5 say
D, by its list of S-tuples of measurements and their
corresponding association costs, i.e.,

D = fh(i1, : : : , iS),ci1:::iS ig

is = 1,2, : : :ns, s= 1,2, : : :S:
(8)

5Similarly as for the S-D assignment problem, the more accurate
notation would be D(t), t = 1, : : : ,T, since we determine the m-best
solutions to T such S-D assignment problems. However, we again
use the simpler notation to avoid unnecessary clutter.

Each S-tuple (i1, : : : , iS) represents a hypothesized
localized target, having position estimate x̂p given by
(5), and a corresponding negative log-likelihood cost
ci1 :::iS given by (4). A feasible solution, or assignment,
say ai, is a set of S-tuples in which each is appears
exactly once (except for dummy measurements 0s
which may appear multiple times), i.e.,

ai =
M[

j=1

f(i1j , : : : , iSj )g

M =
SY

s=1

(ns+1)

isk 6= isl , k 6= l, is = 1, : : : ,ns:

(9)

The feasible solution space A can then be expressed as

A=
[
faig: (10)

The cost of an assignment (or hypothesis), denoted
by c(ai), can then be determined by summing
the individual costs (negative log-likelihoods)
corresponding to the S-tuples occurring in the
assignment, i.e.,

c(ai) =
X

(i1,:::,iS )2ai

ci1:::iS (11)

Determining the single best (most likely) assignment
a¤(1) to D is then a matter of determining the
assignment that minimizes this sum. In this work,
the most likely assignment is determined by solving
(suboptimally) the static S-D assignment problem
using the S-D assignment algorithm developed in [16]
and outlined in the previous subsection.
The m-best assignments to D, i.e., a¤(1), : : : ,a¤(m),

are the m assignments ai 2 A with the m least costs,
i.e.,

a¤(1) = argmin
ai2A

fc(ai)g (12)

a¤(2) = arg min
ai2Ana¤(1)

fc(ai)g (13)

...

a¤(m) = arg min
ai2Ana¤(k)
k=1,:::,m¡1

fc(ai)g: (14)

C. Dynamic 2-D Assignment Problem

In the dynamic 2-D assignment problem, we
want to track an unknown number of targets by
estimating their states (positions and velocities) using
the t composite measurement lists determined by
way of solving the t (static) m-best S-D assignment
problems. Actually, in a real-time situation, the
dynamic problem is solved after each scan to update
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the tracks, starting with the second scan (i.e., the
second m-best S-D problem). We assume the target
state evolves according to a known linear dynamic
model, corrupted by process noise, i.e.,

x(t) = F(±)x(t¡ 1)+G(±)v(t¡ 1) (15)

where, in the present work, the target (or track) state
is a second-order kinematic model with two- or
three-dimensional coordinates, ± is the time interval
between scans, F(¢) is the state transition matrix, G(¢)
is the disturbance matrix, and v(¢) is zero-mean, white
process noise with (known) covariance matrix Q(¢).
The composite measurements (if true) are assumed
to be linear functions of the target state corrupted by
measurement noise, i.e.,

z(t) =Hx(t)+w(t) (16)

where H is the measurement matrix, and w(¢) is
zero-mean, white measurement noise with (known)
covariance matrix R(¢). This latter covariance
follows from the static association of LOS sensor
measurements and is presented in Appendix A.
Before describing the dynamic 2-D assignment

problem formulation, we first describe the
derivation of the composite measurements and their
corresponding probabilities of being true. We use
an efficient (nonenumerative) extraction technique
for the composite measurements and determine
their probabilities using the likelihoods associated
with the feasible joint events (assignments)
corresponding to the m-best S-D assignment
solutions.
Denote the list of composite measurements

(S-tuples) corresponding to the tth (static) m-best S-D
assignment problem solution by

©(t) =
m[

k=1

a¤(k) (17)

where

ja¤(1)j · j©(t)j ·
mX

k=1

ja¤(k)j: (18)

Note j©(t)j is the cardinality of set ©(t), i.e., the
number of distinct S-tuples (composite measurements)
in ©(t). For each composite measurement z 2 ©(t),
define the binary indicator variable

dzk =
½
1 if z 2 a¤(k)
0 otherwise

: (19)

To quantify a composite measurement’s true
measurement pseudoprobability (the approximate
probability of being correct), we use a JPDA-like
technique [5], i.e.,

Pz =

Pm
k=1 e

¡[c(a¤(k))¡c(a
¤
(1))]dzkPm

k=1 e
¡[c(a¤(k))¡c(a

¤
(1))]

(20)

where c(a¤(k)) is defined by (11) and denotes the cost
of the kth best assignment (or hypothesis), i.e., the
sum of the individual costs (negative log-likelihoods)
that correspond to the S-tuples occurring in the kth
best assignment. Note that the best assignment cost
c(a¤(1)) is used as a normalization in the composite
measurement probability quantification since: 1) it is
necessary to avoid the numerical errors that would
ensue when raising the exponential e to such large
powers, and 2) it provides a mechanism to threshold
the (dynamic) number of m-best assignments
determined per S-D assignment problem, i.e, we
determine the m-best solutions to an S-D assignment
problem satisfying the following difference
constraint,

[c(a¤(k))¡ c(a
¤
(1))]< ± (21)

where the threshold ± is an input parameter and
is such that e¡± ¼ ², where ² is set equal to the
computer’s precision.
Once the composite measurement lists have

been compiled and their respective probabilities
determined, we are then ready to enter the dynamic
2-D assignment problem phase for track maintenance.
We cast the 2-D assignment problem as follows:
j©(t)j composite measurements from the latest scan
list t are to be assigned to the N(t¡ 1) most likely
tracks from the previous scans using a global cost
minimization function [4, 5] based on likelihood ratios
and composite measurement probabilities. Specifically,
let yi, i= 0, : : : ,N(t¡ 1) denote a particular track
from the set of existing tracks (including a dummy
track y0), and zj , j = 0, : : : , j©(t)j denote a particular
measurement from the latest scan list t of composite
measurements (including a dummy composite
measurement z0). Define the binary assignment
variable

Âyizj =
½
1 if zj is assigned to yi
0 otherwise

: (22)

Note that Âyiz0 = 1 implies that track yi is unassociated
and has missed a detection in the latest scan.
Furthermore, Ây0zj = 1 implies that composite
measurement zj is unassociated, i.e., not assigned
to any of the N(t¡ 1) existing tracks, but, instead,
assigned to the dummy track (false alarm or new
track initiation). Since measurement errors within a
scan are independent of each other, maximizing the
likelihood ratio, consisting of the joint pdf-probability
[4, 5] of measurements given their origins and the
corresponding detection events, over the set of feasible
assignments can be cast into the following 2-D
assignment problem:

min
N(t¡1)X

yi=0

j©(t)jX

zj=0

cyizj Âyizj (23)
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subject to:

j©(t)jX

zj=0

Âyizj = 1, yi = 1, : : : ,N(t¡ 1)

N(t¡1)X

yi=0

Âyizj = 1, zj = 1, : : : , j©(t)j

where the cost of assigning measurement zj to track yi
is

cyizj =

8
>>>><

>>>>:

0 if yi or zj = 0

¡ log
Ã
¤(yi,zj)Pzj
¤(0,zj)

!
if ¡ log(¢)< 0

1 otherwise

:

(24)

The numerator in the above ¡ log(¢) expression
is based on a likelihood function (LF) calculation
¤(¢) from a KF state estimator and the composite
measurement probability given by (20). The
numerator denotes the likelihood that composite
measurement zj from the tth (static) m-best S-D
assignment problem solution originated from
track yi, and the denominator is the likelihood that
measurement zj corresponds to none of the existing
tracks (i.e., a false alarm). The likelihood of false
alarms, i.e., ¤(0,zj), is assumed uniformly probable
over each sensor’s field of view [5].

III. ALGORITHM DESCRIPTION

For the three subproblems identified in the
previous section, below we describe our solution
approaches for each, namely, 1) the static S-D
assignment solution, 2) the m-best S-D assignment
solution, and 3) the dynamic 2-D assignment solution.
To summarize the algorithm, initially sets of

measurements from each sensor are associated
(accounting for missed detections and false alarms)
using a static S-D assignment algorithm based on [15,
16, 29, 30]. Afterwards, the m-best S-D assignment
solutions are determined and combined (using an
approach based on [41, 42]) to form composite
measurements based on a JPDA approach. Finally,
these composite measurements are passed to a
dynamic 2-D assignment algorithm using an approach
based on [6, 30].

A. Static S-D Assignment Solution

Using the approach described in [15, 16, 29, 30],
the S-D assignment problem is solved as a series
of relaxed 2-D subproblems in two phases: 1) the
constraint relaxation phase, and 2) the multiplier
update and constraint enforcement phase. We
successively relax the constraint sets r = S,S¡

1,S¡ 2, : : : ,3 and append them to the cost function
using Lagrangian multipliers ur. Thus, at stage r = 3
we have relaxed the problem to a 2-D assignment
problem, which is then optimally solved using the
generalized auction algorithm [6, 15]. In the constraint
enforcement phase, we compute a feasible (but most
likely suboptimal) solution to the 3-D problem via
a 2-D assignment problem by enforcing the third
constraint set, and update u3, via an accelerated
subgradient method [33]. Similarly, we successively
compute feasible solutions to the r-D subproblems
for r = 4,5, : : : ,S via a 2-D assignment problem
by enforcing the rth constraint; and update the
corresponding Lagrangian multiplier vectors ur.
This cycle of relaxing constraints, solving reduced
dimensional assignment problems and updating
the Lagrangian multipliers is repeated until all the
constraints are satisfied in the relaxed problem (in
which case the solution is optimal), or the feasible
solution is of acceptable quality. For more details on
this approach, see [16].

B. m-best S-D Assignment Solution

To determine the m-best solutions to a static S-D
assignment problem, we use an approach similar
to the one we used in our m-best 2-D assignment
work [41, 42]. Specifically, given an S-D assignment
problem, denoted as D, we partition the (sub)problem
D(m¡1) that determines the (m¡ 1)st best S-D
assignment a¤(m¡1) into n= 1, : : : , ja¤(m¡1)j subproblems
Dkn (k =m¡ 1) having solution subspaces Akn ½ A and
enforce the following two constraints:

ja¤(k)j[

n=1

Akn = Ak ¡ a
¤
(k) (25)

Aki \Akj =Ø i,j = 1, : : : , ja¤(k)j, i 6= j: (26)

To create subproblem Dk1 , we first copy Dk to Dk1 .
We then remove from Dk1 the 1st S-tuple in the best
(most likely) assignment a¤(k) of Dk, i.e., we remove
(i11 , : : : , iS1 ) 2 a

¤
(k) from Dk1 . Hence, subproblem Dk1 is

Dk less (i11 , : : : , iS1 ), which implies that no solution to
Dk1 will ever contain this 1st S-tuple in its solution
space, i.e.,

Ak1 = fai 2 Ak : (i11 , : : : , iS1 ) =2 aig (27)

In general, to create subproblem Dkn , 2· n·
ja¤(k)j, we first copy Dk to Dkn , and then perform the
following two steps. First, we remove from Dkn the
nth S-tuple in the best assignment a¤(k) of Dk, i.e.,
we remove (i1n , : : : , iSn) 2 a

¤
(k) from Dkn . This implies

that no solution to Dkn will ever contain this nth
S-tuple in its solution space. Second, we enforce
the 1st, : : : , (n¡ 1)st S-tuples, i.e., (i1j , : : : , iSj ) 2 a

¤
(k),

j = 1, : : : , (n¡ 1), in the best assignment of Dk to be
in all solutions to Dkn . We enforce this by removing
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in Dkn all S-tuples incident to isj , s= 1, : : : ,S in Dk,
except for the S-tuples (i1j , : : : , iSj ) themselves, which
implies that every solution to Dkn will contain the
1st, : : : , (n¡ 1)st S-tuples in its solution space. Hence,

Akn =

8
><

>:

ai 2 Ak : (i1j , : : : , iSj ) 2 ai,

(i1n , : : : , iSn) =2 ai,
(i1j , : : : , iS), : : : , (i1, : : : , iSj ) =2 ai

9
>=

>;
: (28)

Note that solution spaces Akn for subproblems Dkn , n=
1, : : : , ja¤(k)j, are disjoint and their union will be exactly
the solution space to Dk less its best assignment (i.e.,
Ak ¡ a¤(k)).
After partitioning Dk according to its best

assignment a¤(k), we solve each subproblem Dkn ,
1· n· ja¤(k)j, and pair it together with its best
solution a(kn), and place each pairing (Dkn ,a(kn)) on a
priority queue, say Q. The mth best assignment for
D, i.e., a¤(m), is the assignment a(jn) (j = 1, : : : ,m¡1)
corresponding to subproblem Djn on the queue Q
having minimum cost (or maximum likelihood), i.e.,

a¤(m) = arg min
a(jn )2Q

fc(a(jn))g: (29)

The complexity of our m-best S-D assignment
algorithm is as follows. Per S-D assignment problem,
we perform one partitioning task for each of the
m-best assignments determined. Hence, in the worst
case, each partitioning creates n new subproblems,
where n= ja¤(m¡1)j. This creates up to O(mn) S-D
assignment problems to solve and insertions of
(problem, solution) pairings in the queue Q. Solving
each S-D assignment problem has worst case
complexity O(Skn3) [16], where k is the number
of relaxation iterations. Each insertion step has
worst case complexity O(mn). Hence, the worst case
complexity of m-best S-D is O(mn(Skn3 +mn)) =
O(mSkn4). Using the preprocessing and optimization
steps as proposed by Miller [25] and in a previous
effort of ours [41], the complexity of the m-best S-D
assignment algorithm can be reduced to O(mSkn3).

C. Dynamic 2-D Assignment Solution

In this work, we used the generalized auction
algorithm [6, 30] to solve the t= 1, : : : ,T dynamic 2-D
assignment problems. Since the auction algorithm is
well known, we do not describe it here and simply
refer interested readers to [6, 30] for more details.

IV. ALGORITHM PARALLELIZATION

To help mitigate the computational complexity
issues associated with the m-best S-D assignment
algorithm, we developed a multiprocess parallelization
on a 4-processor shared-memory SPARCstation
20 multiprocessor. The software utilized in this
work consisted of the Solaris 2.4.2 development

Fig. 1. Shared-memory parallelization of partitioning task in
m-best S-D.

environment and the SunOS 5.4.2 UNIX operating
system (OS). For this parallelization, we utilized
UNIX’s shared-memory interprocess communication
(IPC) constructs for our synchronization mechanism.
The parallelization developed for m-best

S-D exploits its many independent and highly
parallelizable tasks, i.e., all tasks associated with
solving the multiple 2-D assignment problems
generated as a result of the m-best partitioning
process. The parallelization is coarse-grained
and based on the supervisor/worker model (see
Fig. 1). Recall that in the partitioning task, after
determining the best (most likely) solution to an
initial S-D assignment problem, denoted as (D,a¤(1)),
the partitioning task consists of creating n= ja¤(1)j
subproblems, say D1, : : : ,Dn, and determining their
best solutions, say a(1), : : : ,a(n), respectively. Since each
of the n subproblems are independent of one another,
they can be processed (i.e., created and solved) in
parallel.
Specifically, the supervisor process creates a

specified number of worker processes, say p· n,
to process the n subproblems and waits for the
processing to be completed before determining
the next best assignment. Each worker process,
asynchronously and in parallel, creates its respective
subproblem(s) and determines the (their) best
solution(s), i.e., collectively they determine
(D1,a(1)), : : : , (Dn,a(n)). Since the processing cost
corresponding to each subproblem is not uniform
(depends on the number of tuples that are enforced
and/or removed based on the partitioning process),
dynamic scheduling of subproblems across processes
is employed. In this way, maximum load balancing is
achieved [38]. Upon processing of the n subproblems
by the p worker processes, the supervisor process
can then determine the 2nd best assignment and
the corresponding subproblem that determines it,
say, (Dj ,a(j) = a

¤
(2)), 1· j · n. To find the 3rd best

assignment, we simply repeat this process, replacing
(D,a¤(1)) with (Dj ,a

¤
(2)), and so on.

V. RESULTS

A. Problem Description

In this section, we solve at t= 1, : : : ,10 different
time instances the following problem. There are NS
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TABLE I
Composite Measurements, Corresponding True Measurement Probabilities, True Origin at Time t = 1

Meas. S-tuple ML Pos Est Neg Log-Like Probability LOS Components Composite
No. zi 2 ©(t) x̂p czi

Pz Target ID—FA Meas. Origin

1 (1,1,0,1,1,1,1) [¡813:66,524:19] ¡102:96 0.000003 t1,t1,0,t1,t1,t1,t1 –
2 (2,2,1,2,2,2,2) [¡367:91,545:97] ¡115:46 0.000003 t2,t2,t2,t2,t2,t2,t2 –
3 (3,3,2,3,3,3,3) [¡5:93,507:58] ¡108:57 1.0 t3,t3,t3,t3,t3,t3,t3 t3
4 (4,5,3,4,4,4,4) [437:00,464:54] ¡94:11 1.0 t5,t5,t4,t4,t4,t4,t4 t4,t5 fMxg
5 (0,4,0,5,5,5,0) [833:54,890:15] ¡17:55 0.000003 0,t4,0,t5,t5,t5,0 –
6 (2,2,1,2,2,2,3) [¡349:44,587:77] ¡114:26 0.0 t2,t2,t2,t2,t2,t2,t3 –
7 (3,3,2,3,3,3,2) [¡22:58,478:32] ¡102:86 0.0 t3,t3,t3,t3,t3,t3,t2 –
8 (1,1,0,1,1,1,2) [¡802:62,580:31] ¡95:48 0.999997 t1,t1,0,t1,t1,t1,t2 t1
9 (2,2,1,2,2,2,1) [¡378:46,513:66] ¡115:29 0.999997 t2,t2,t2,t2,t2,t2,t1 t2

Fig. 2. Target positions and LOS measurements for 7 sensor 5
target direction finding problem at time sample k = 1.

sensors at known fixed locations in a plane arranged
in a semicircle of radius 1000 km centered at the
origin of the coordinate system. Each sensor is a
direction finding ionosonde [8], i.e., a multielement
passive interferometer which estimates the LOS
(azimuth) of an RF emission, for example, a radio
message from an aircraft, via (DF) ionogram. These
sensors have extremely high range and can “see”
beyond the curvature of the Earth, because they
receive the signals bouncing off the ionosphere.
However, because of the time-varying instabilities
in the ionosphere, the rms accuracy of these
measurements varies widely (0:3± to 1:7± [8])
depending on the prevalent climatic conditions, time
of the day and a variety of other factors. In our
simulations we used LOS measurement error standard
deviation, ¾µ, of 2:0

±. The sensors are assumed to be
forward looking with a field of view of 180±, with
detection probability of PD = 0:9. The false alarm rate
of the sensors is 0.8/rad. With 5 targets, the average
number of detections per scan is therefore 7 (with
5PD = 4:5 true detections and 0:8¼ = 2:5 spurious
detections).
This scenario results in a rather significant

number of candidate associations to process. In

Fig. 3. Composite measurements for 7 sensor 5 target direction
finding problem across k = 1, : : :10 time samples.

Fig. 2 we illustrate the numerous LOS measurements
generated for one specific time sample. Any two
LOS measurements intersect at a point in a plane,
implying a target at that position would produce
these two measurements. To reduce the number of
candidate associations, we require that a target must
be detected by the majority of the sensors to be
considered in the association process. Thus, in the 7
sensor scenario, a candidate association must include
at least 4 nondummy LOS measurements. Note that
a true target is detected by 4 or more sensors in a 7
sensor scenario with a probability of 0.997. If there
are only three sensors, a true target is detected by 2
or more sensors with a probability of 0.97. Therefore,
this assumption does not lead to a significant loss of
accuracy.
The corresponding composite measurements

determined as a result of solving for the 30-best
static S-D (S = 7) assignment problems for each of
the 10 different time samples as shown in Fig. 3.
In Tables I—X we provide, for each composite
measurement determined in each of the 10 time
samples, the composite measurement’s 1) S-tuple,
2) ML position estimate, 3) negative log-likelihood
cost, 4) true measurement probability, 5) the actual
target ID (or false alarm) that determined each LOS
measurement in the corresponding S-tuple for the
composite measurement, and 6) the origin of the
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TABLE II
Composite Measurements, Corresponding True Measurement Probabilities, True Origin at Time t = 2

Meas. S-tuple ML Pos Est Neg Log-Like Probability LOS Components Composite
No. zi 2 ©(t) x̂p czi

Pz Target ID—FA Meas. Origin

1 (1,1,0,1,1,1,3) [¡610:82,468:43] ¡102:52 0.0 t1,t1,0,t1,t1,t1,t3 –
2 (2,2,1,2,2,2,1) [¡360:22,350:67] ¡119:53 0.0 t2,t2,t2,t2,t2,t2,t1 –
3 (3,3,2,3,3,3,2) [¡107:05,300:86] ¡109:02 1.0 t3,t3,t3,t3,t3,t3,t2 t3
4 (4,5,3,4,4,4,4) [514:02,305:47] ¡107:89 1.0 t5,t5,t4,t4,t4,t4,t4 t4,t5 fMxg
5 (0,4,0,5,5,5,0) [689:95,455:64] ¡21:67 0.0 0,t4,0,t5,t5,t5,0 –
6 (1,1,0,1,1,1,1) [¡609:58,472:43] ¡103:17 1.0 t1,t1,0,t1,t1,t1,t1 t1
7 (2,2,1,2,2,2,3) [¡360:70,346:06] ¡118:81 1.0 t2,t2,t2,t2,t2,t2,t3 t2

TABLE III
Composite Measurements, Corresponding True Measurement Probabilities, True Origin at Time t = 3

Meas. S-tuple ML Pos Est Neg Log-Like Probability LOS Components Composite
No. zi 2 ©(t) x̂p czi

Pz Target ID—FA Meas. Origin

1 (1,1,0,1,3,1,1) [¡401:17,426:47] ¡105:12 0.000027 t1,t1,0,t1,t3,t1,t1 –
2 (2,2,1,2,2,2,3) [¡363:17,123:96] ¡120:11 1.0 t2,t2,t2,t2,t2,t2,t3 t2
3 (3,3,2,3,1,3,2) [¡206:32,109:53] ¡108:78 0.000027 t3,t3,t3,t3,t1,t3,t2 –
4 (4,5,3,4,4,5,4) [605:73,128:19] ¡120:75 1.0 t5,t5,t4,t4,t4,t5,t4 t4,t5 fMxg
5 (0,4,0,5,5,4,0) [560:36,124:10] ¡24:58 1.0 0,t4,0,t5,t5,t4,0 t4,t5 fMxg
6 (1,1,0,1,1,1,1) [¡407:60,421:75] ¡103:32 0.999973 t1,t1,0,t1,t1,t1,t1 t1
7 (3,3,2,3,3,3,2) [¡200:33,112:72] ¡109:58 0.999973 t3,t3,t3,t3,t3,t3,t2 t3

TABLE IV
Composite Measurements, Corresponding True Measurement Probabilities, True Origin at Time t = 4

Meas. S-tuple ML Pos Est Neg Log-Like Probability LOS Components Composite
No. zi 2 ©(t) x̂p czi

Pz Target ID—FA Meas. Origin

1 (1,1,0,1,1,1,1) [¡208:65,370:19] ¡103:38 0.999999 t1,t1,0,t1,t1,t1,t1 t1
2 (2,2,1,2,2,3,3) [¡366:73,¡86:12] ¡116:59 1.0 t2,t2,t2,t2,t2,t3,t3 t2,t3 fMxg
3 (3,3,2,3,3,2,2) [¡299:43,¡91:48] ¡114:34 1.0 t3,t3,t3,t3,t3,t2,t2 t2,t3 fMxg
4 (4,5,3,5,5,5,4) [493:78,¡118:32] ¡119:13 1.0 t5,t5,t4,t5,t5,t5,t4 t5
5 (0,4,0,4,4,4,0) [685:75,¡99:26] ¡12:45 0.999999 0,t4,0,t4,t4,t4,0 t4
6 (2,2,1,2,2,3,2) [¡365:72,¡81:29] ¡113:26 0.0 t2,t2,t2,t2,t2,t3,t2 –
7 (3,3,2,3,3,2,3) [¡300:17,¡91:16] ¡116:60 0.0 t3,t3,t3,t3,t3,t2,t3 –
8 (4,5,3,5,5,5,0) [493:61,¡106:97] ¡50:70 0.0 t5,t5,t4,t5,t5,t5,0 –
9 (0,4,0,4,4,4,4) [680:22,¡91:30] ¡48:08 0.0 0,t4,0,t4,t4,t4,t4 –
10 (3,3,2,3,3,2,4) [¡299:63,¡121:72] ¡89:67 0.0 t3,t3,t3,t3,t3,t2,t4 –
11 (4,5,3,5,5,5,2) [480:91,¡55:44] ¡104:49 0.0 t5,t5,t4,t5,t5,t5,t2 –
12 (1,1,0,1,1,1,0) [¡208:78,369:90] ¡42:39 0.000001 t1,t1,0,t1,t1,t1,0 –

composite measurements which have nonnegligible
probability of being true according to (20). While
some composite measurements are “mixed” (the
equivalent of unresolved targets), only one is a
“false alarm” (see the fMxgand fFAgreferences in
Tables I—X for mixed and false alarm measurements,
respectively).
For the simulation, the 5 targets were initially

placed on the y = 500 line, with an intertarget
separation of 400 km. For ¾µ = 2

±, the intertarget
separation, as seen by the middle sensor is 7.5
standard deviations. The targets are well separated
so that there are no unresolved targets. Nevertheless,
there are numerous candidate “ghost” intersections
of LOS measurements as well as a large number of
possible subsets of these intersections at each scan,

which the 7D assignment problem tackles successfully
with only a few incorrect composite measurements
being accepted.
Fig. 4 shows the true track trajectories and

corresponding estimated track state predictions for
each of the 5 targets in track. Note that no false or
missing tracks were generated by the m-best S-D
tracking algorithm for this tracking scenario. Also,
as is clearly seen from Fig. 4, fairly accurate data
association and state estimation ensued during the
dynamic 2-D phase that follows the m-best S-D. One
major reason for this was because much of the work
and cleaning up of the data was accomplished during
the static m-best S-D phase, i.e., instead of trying to
associate and filter S sets of LOS measurements from
T different time samples, we associate and filter T

m-BEST S-D ASSIGNMENT ALGORITHM WITH APPLICATION TO MULTITARGET TRACKING 31



TABLE V
Composite Measurements, Corresponding True Measurement Probabilities, True Origin at Time t = 5

Meas. S-tuple ML Pos Est Neg Log-Like Probability LOS Components Composite
No. zi 2 ©(t) x̂p czi

Pz Target ID—FA Meas. Origin

1 (1,1,0,1,1,1,1) [¡8:76,318:96] ¡103:38 1.0 t1,t1,0,t1,t1,t1,t1 t1
2 (2,2,2,2,2,3,3) [¡380:67,¡298:34] ¡114:64 1.0 t2,t2,t3,t2,t2,t3,t3 t2,t3 fMxg
3 (3,3,1,3,3,2,2) [¡392:08,¡314:85] ¡112:67 1.0 t3,t3,t2,t3,t3,t2,t2 t2,t3 fMxg
4 (4,5,3,4,4,4,4) [786:97,¡293:42] ¡102:70 1.0 t5,t5,t4,t4,t4,t4,t4 t4,t5 fMxg
5 (8,0,11,10,0,5,0) [¡1145:64,199:42] ¡19:32 1.0 fa,0,fa,fa,0,t5,0 fFAg
6 (0,4,0,5,5,5,0) [390:03,¡301:55 ¡14:79 0.0 0,t4,0,t5,t5,t5,0 –
7 (2,2,2,2,2,2,2) [¡380:84,¡289:07] ¡113:88 0.0 t2,t2,t3,t2,t2,t2,t2 –
8 (3,3,1,3,3,3,3) [¡391:73,¡322:98] ¡113:26 0.0 t3,t3,t2,t3,t3,t3,t3 –
9 (4,5,3,4,4,4,0) [793:25,¡305:67] ¡42:75 0.0 t5,t5,t4,t4,t4,t4,0 –
10 (3,3,1,3,3,2,0) [¡390:84,¡320:68] ¡49:16 0.0 t3,t3,t2,t3,t3,t2,0 –
11 (1,1,0,1,1,1,0) [¡8:76,319:23] ¡42:47 0.0 t1,t1,0,t1,t1,t1,0 –

TABLE VI
Composite Measurements, Corresponding True Measurement Probabilities, True Origin at Time t = 6

Meas. S-tuple ML Pos Est Neg Log-Like Probability LOS Components Composite
No. zi 2 ©(t) x̂p czi

Pz Target ID—FA Meas. Origin

1 (1,1,0,1,1,1,1) [194:10,268:85] ¡103:08 0.0 t1,t1,0,t1,t1,t1,t1 –
2 (2,5,1,2,2,2,3) [¡382:62,¡484:96] ¡121:34 1.0 t2,t5,t2,t2,t2,t2,t3 t2
3 (3,4,2,3,3,5,2) [¡501:81,¡494:63] ¡112:65 1.0 t3,t4,t3,t3,t3,t5,t2 t3
4 (4,2,3,5,5,0,0) [298:47,¡544:94] ¡37:80 0.0 t5,t2,t4,t5,t5,0,0 –
5 (0,3,0,4,4,0,4) [883:01,¡518:17] ¡37:56 0.0 0,t3,0,t4,t4,0,t4 –
6 (0,0,0,4,4,4,4) [891:99,¡498:80] ¡62:04 0.0 0,0,0,t4,t4,t4,t4 –
7 (2,5,1,2,2,2,2) [¡382:68,¡484:03] ¡118:44 0.0 t2,t5,t2,t2,t2,t2,t2 –
8 (3,4,2,3,3,5,3) [¡501:39,¡495:30] ¡114:84 0.0 t3,t4,t3,t3,t3,t5,t3 –
9 (4,3,3,5,5,0,0) [300:82,¡546:00] ¡31:96 0.0 t5,t3,t4,t5,t5,0,0 –
10 (3,3,2,3,3,5,2) [¡500:45,¡498:76] ¡114:49 0.0 t3,t3,t3,t3,t3,t5,t2 –
11 (4,2,3,5,0,0,0) [273:72,¡565:30] ¡30:47 0.0 t5,t2,t4,t5,0,0,0 –
12 (1,1,0,1,1,1,0) [191:83,269:83] ¡42:45 0.0 t1,t1,0,t1,t1,t1,0 –
13 (1,1,0,1,1,0,1) [181:96,264:54] ¡85:21 1.0 t1,t1,0,t1,t1,0,t1 t1
14 (4,3,0,5,5,0,0) [288:23,¡515:21] ¡13:12 1.0 t5,t3,0,t5,t5,0,0 t5
15 (0,2,3,4,4,0,4) [868:71,¡530:25] ¡82:61 1.0 0,t2,t4,t4,t4,0,t4 t4

TABLE VII
Composite Measurements, Corresponding True Measurement Probabilities, True Origin at Time t = 7

Meas. S-tuple ML Pos Est Neg Log-Like Probability LOS Components Composite
No. zi 2 ©(t) x̂p czi

Pz Target ID—FA Meas. Origin

1 (1,1,0,1,1,1,1) [394:48,216:39] ¡102:07 0.999923 t1,t1,0,t1,t1,t1,t1 t1
2 (2,2,1,2,2,3,2) [¡391:43,¡696:42] ¡104:35 1.0 t2,t2,t2,t2,t2,t3,t2 t2
3 (3,3,2,3,3,2,3) [¡595:24,¡707:13] ¡111:55 1.0 t3,t3,t3,t3,t3,t2,t3 t3
4 (4,5,3,5,5,5,0) [190:08,¡714:65] ¡51:27 1.0 t5,t5,t4,t5,t5,t5,0 t5
5 (4,5,3,5,5,0,0) [190:43,¡716:78] ¡42:31 0.0 t5,t5,t4,t5,t5,0,0 –
6 (2,2,1,2,2,2,2) [¡391:27,¡696:46] ¡109:01 0.0 t2,t2,t2,t2,t2,t2,t2 –
7 (3,3,2,3,3,3,3) [¡595:17,¡706:66] ¡106:52 0.0 t3,t3,t3,t3,t3,t3,t3 –
8 (1,1,0,1,1,1,0) [392:55,221:45] ¡42:13 0.0 t1,t1,0,t1,t1,t1,0 –
9 (1,1,0,1,1,0,1) [386:54,221:94] ¡83:93 0.000077 t1,t1,0,t1,t1,0,t1 –

sets of composite measurement lists based on the S
sets of LOS measurements. As a result, the dynamic
2-D phase could successfully associate the resulting
composite measurements into tracks and discard an
occasional false composite measurement.
The target motion models used in the state

estimator (KF) were constant velocity and the
measurement noise covariance matrices for the

composite measurements were based on the
derivations in Appendix A and had standard
deviations 25—50 km. In Figs. 5 and 6 we provide
rms plots for both position and velocity errors across
100 Monte Carlo simulations and averaged over the
5 targets. Clearly, as can be seen, fairly small and
stable errors in position and velocity arise. Again, as
before, because much of the work and cleaning up of
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TABLE VIII
Composite Measurements, Corresponding True Measurement Probabilities, True Origin at Time t = 8

Meas. S-tuple ML Pos Est Neg Log-Like Probability LOS Components Composite
No. zi 2 ©(t) x̂p czi

Pz Target ID—FA Meas. Origin

1 (1,1,0,1,1,1,1) [597:48,162:74] ¡94:27 1.0 t1,t1,0,t1,t1,t1,t1 t1
2 (2,2,1,2,2,2,2) [¡394:87,¡904:15] ¡104:42 1.0 t2,t2,t2,t2,t2,t2,t2 t2
3 (3,3,0,0,3,3,3) [¡693:50,¡912:80] ¡77:43 1.0 t3,t3,0,0,t3,t3,t3 t3
4 (4,5,3,0,0,5,0) [83:45,¡869:44] ¡34:36 1.0 t5,t5,t4,0,0,t5,0 t5
5 (0,0,0,4,4,4,4) [1104:17,¡906:94] ¡65:24 0.00001 0,0,0,t4,t4,t4,t4 –
6 (2,2,13,2,0,3,2) [¡469:68,¡865:55] ¡83:68 0.0 t2,t2,fa,t2,0,t3,t2 –
7 (3,3,0,0,3,2,3) [¡686:90,¡922:28] ¡85:81 0.0 t3,t3,0,0,t3,t2,t3 –

TABLE IX
Composite Measurements, Corresponding True Measurement Probabilities, True Origin at Time t = 9

Meas. S-tuple ML Pos Est Neg Log-Like Probability LOS Components Composite
No. zi 2 ©(t) x̂p czi

Pz Target ID—FA Meas. Origin

1 (1,1,0,1,1,1,1) [767:11,127:91] ¡83:09 0.098367 t1,t1,0,t1,t1,t1,t1 t1
2 (3,3,0,0,0,2,3) [¡788:48,¡1171:09] ¡67:64 0.098366 t3,t3,0,0,0,t2,t3 t3
3 (4,5,3,0,0,3,2) [¡247:31,¡888:26] ¡77:66 0.098366 t5,t5,t4,0,0,t3,t2 t5
4 (0,4,0,4,4,0,4) [1118:65,¡1093:11] ¡57:61 1.0 0,t4,0,t4,t4,0,t4 t4
5 (0,2,1,2,2,2,2) [¡415:39,¡1089:63] ¡95:56 0.0 0,t2,t2,t2,t2,t2,t2 –
6 (0,0,2,3,3,3,3) [¡789:50,¡1096:37] ¡75:28 0.0 0,0,t3,t3,t3,t3,t3 –
7 (0,0,0,4,4,4,4) [1197:61,¡1108:90] ¡65:69 0.0 0,0,0,t4,t4,t4,t4 –
8 (4,5,3,0,3,3,3) [¡236:08,¡900:34] ¡62:56 0.0 t5,t5,t4,0,t3,t3,t3 –
9 (0,0,1,2,2,2,2) [¡414:17,¡1087:54] ¡82:07 0.901633 0,0,t2,t2,t2,t2,t2 t2
10 (4,5,3,0,3,3,2) [¡234:96,¡902:07] ¡66:04 0.0 t5,t5,t4,0,t3,t3,t2 –
11 (1,1,0,1,1,1,0) [801:39,129:74] ¡39:78 0.0 t1,t1,0,t1,t1,t1,0 –
12 (4,5,3,0,0,3,3) [¡253:43,¡886:18] ¡75:69 0.901633 t5,t5,t4,0,0,t3,t3 t5,t3 fMxg
13 (1,1,0,1,1,0,0) [796:84,137:63] ¡33:86 0.901633 t1,t1,0,t1,t1,0,0 t1

TABLE X
Composite Measurements, Corresponding True Measurement Probabilities, True Origin at Time t = 10

Meas. S-tuple ML Pos Est Neg Log-Like Probability LOS Components Composite
No. zi 2 ©(t) x̂p czi

Pz Target ID—FA Meas. Origin

1 (1,1,0,1,1,1,0) [1022:61,106:15] ¡28:64 0.0 t1,t1,0,t1,t1,t1,0 –
2 (2,2,0,2,2,2,2) [¡413:00,¡1285:32] ¡92:10 1.0 t2,t2,0,t2,t2,t2,t2 t2
3 (3,3,2,3,3,3,3) [¡890:97,¡1296:24] ¡107:29 1.0 t3,t3,t3,t3,t3,t3,t3 t3
4 (0,0,0,4,4,4,4) [1290:08,¡1307:79] ¡65:77 1.0 0,0,0,t4,t4,t4,t4 t4
5 (1,1,0,1,1,0,0) [995:53,74:61] ¡31:59 1.0 t1,t1,0,t1,t1,0,0 t1

Fig. 4. Target tracks: true target positions, estimated positions
from composite measurements processed.

the data was accomplished during the static m-best
S-D phase, the dynamic 2-D phase of m-best S-D was
fairly straightforward and non-stressing.
The 7 sensor scenario presents a formidable

challenge to the S-D association algorithm, and pushes
our m-best S-D algorithm to its limits. For the parallel
performance, using a 4-processor SPARCstation 20,
we obtained a speedup of 2.72 for an efficiency of
68%, where the standard definitions for speedup and
efficiency are assumed, i.e.,

speedup =
¿1
¿p
, efficiency =

speedup
p

(30)

where ¿1 denotes the sequential execution time
utilizing 1 processor, and ¿p denotes the parallel
execution time utilizing p processors.
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Fig. 5. RMS position plot across 100 Monte Carlo runs averaged over 5 targets.

VI. CONCLUSIONS

In this paper we described an efficient and novel
approach to data association based on the m-best S-D
assignment algorithm. We demonstrated the feasibility
of the m-best S-D assignment algorithm for track
formation and maintenance using a passive sensor
multitarget tracking problem (operating in a type III
configuration [5]). We showed how to efficiently (and
nonenumeratively) extract sets of complete position
“composite measurements” and determine their
probabilities using a JPDA-like technique (based on
the likelihoods associated with the feasible joint events
corresponding to the (static) m-best S-D assignment
solutions). We then used the series of composite
measurement lists, along with their corresponding
probabilities, in a dynamic 2-D assignment algorithm
to estimate the states of the moving targets over time.
We formulated the 2-D assignment cost coefficients

using a likelihood function that incorporates the
“true” composite measurement probabilities. Using
a simulated passive sensor multitarget tracking
problem, we showed that the m-best S-D assignment
algorithm can perform well. Another significance of
this work is that the m-best S-D assignment
algorithm (in a sliding window mode) provides
for an efficient implementation of a suboptimal
MHT algorithm by obviating the need for a brute
force enumeration of an exponential number of joint
hypotheses.

APPENDIX A. COMPOSITE MEASUREMENT
COVARIANCE DERIVATION

The solution of the dynamic 2-D assignment
problem across lists of composite measurements
(which is coupled with the target state estimator)
requires the calculation of the measurement
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Fig. 6. RMS velocity plot across 100 Monte Carlo runs averaged over 5 targets.

covariance matrix R(¢). In this work we use the
Cramer—Rao lower bound on the covariance of the
composite measurements [4] as the measurement
noise covariance matrix entering into the dynamic
state estimator. For a hypothesized localized target,
having position estimate x̂p given by (5), the Fisher
information matrix (FIM) is given by

J = r¡1
SX

s=1

gx̂p(s, x̂p)gx̂p(s, x̂p)
0

where S is the number of scans processed in the static
S-D assignment problem, and

gx̂p(s, x̂p)
¢
=rx̂pg(s, x̂p):

For a target position estimate x̂p = [´x̂p ,³x̂p]
0,

sensor position ys = [´ys ,³ys]
0, and measurement

µ = tan¡1
Ã
³x̂p ¡ ³ys
´x̂p ¡ ´ys

!

the expressions for the components of the gradient
vector entering into the FIM are

g´(s, x̂p) =¡
³x̂p ¡ ³ys

(´x̂p ¡ ´ys)2 + (³x̂p ¡ ³ys)2

g³(s, x̂p) =
´x̂p ¡ ´ys

(´x̂p ¡ ´ys)2 + (³x̂p ¡ ³ys)2
:
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