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     To date, there has been a lack of efficient and practical distributed- and shared-memory
parallelizations of the data association problem for multitarget tracking. Filling this gap is one
of the primary focuses of the present work. We begin by describing our data association algo-
rithm in terms of an Interacting Multiple Model (IMM) state estimator embedded into an
optimization framework, namely, a two-dimensional (2D) assignment problem (i.e., weighted
bipartite matching). Contrary to conventional wisdom, we show that the data association (or
optimization) problem is not the major computational bottleneck; instead, the interface to the
optimization problem, namely, computing the rather numerous gating tests and IMM state
estimates, covariance calculations, and likelihood function evaluations (used as cost coefficients
in the 2D assignment problem), is the primary source of the workload. Hence, for both a
general-purpose shared-memory MIMD (Multiple Instruction Multiple Data) multiprocessor
system and a distributed-memory Intel Paragon high-performance computer, we developed
parallelizations of the data association problem that focus on the interface problem. For the
former, a coarse-grained dynamic parallelization was developed that realizes excellent per-
formance (i.e., superlinear speedups) independent of numerous factors influencing problem
size (e.g., many models in the IMM, denseycluttered environments, contentious target-measure-
ment data, etc.). For the latter, an SPMD (Single Program Multiple Data) parallelization was
developed that realizes near-linear speedups using relatively simple dynamic task allocation
algorithms. Using a real measurement database based on two FAA air traffic control radars, we
show that the parallelizations developed in this work offer great promise in practice.
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1. Introduction

In recent years, there has been increasing interest in applying parallel processing
techniques to computationally intensive problems associated with multitarget tracking
[1–4,10,27,30,34–37]. In general, a  multitarget tracking problem is one of detecting
an unknown number of targets, and estimating target state parameters (e.g., position,
velocity, acceleration) using noisy measurements from one or more sensors in the
presence of spurious observations and occasional missed detections. To be useful
(practical), parallel processing is often necessary for such problems because of the
limited computational performance of tracking algorithms on conventional uni-
processor systems [2,27,28,30,36,37]. Hence, in developing a practical solution to a
multitarget tracking problem, in addition to solving the conventional data association
and state estimation  problems, often an efficient parallelization must also be developed.

1.1. Data association

The problem of data association, namely, partitioning measurements across lists
(e.g., sensor scans) into tracks and false alarms so that accurate estimates of true tracks
can be recovered, has been extensively studied for many years. A probabilistic inter-
pretation is typically given to the data association problem, consequently, the partition-
ing of measurements into tracks and false alarms may be done in a variety of ways,
e.g., (in order of decreasing complexity) the Multiple Hypotheses Tracking (MHT)
method [9,39], the multidimensional SD (S ≥ 3) assignment method [16,17,26,28,
31–33], the Joint Probabilistic Data Association (JPDA) method [9], and numerous
two-dimensional (2D) assignment methods [5,6,10,19,24,34–36].

For a given multitarget tracking problem, the decision as to which algorithm
to employ in solving the data association problem is typically motivated by several
factors, including: (i) tracking accuracy requirements, often determined by the char-
acteristics of the problem and the multitarget scenario in the surveillance region (e.g.,
passiveyactive sensors, denseysparse targets, cluttered, existence of crossing, splitting,
andyor merging targets, etc.), and (ii) computational requirements, often determined
by choices made with respect to (i)  and the computational resources available.

Historically, the MHT algorithm has proven to be a fairly accurate and reliable
approach to data association (especially in dense environments) since it is the only
approach that can truly provide an optimal data association solution. However, its
practicality and feasibility have been hampered since it requires an enumeration of an
exponentially increasing number of feasible joint association hypotheses to evaluate
probabilities. To be feasible, MHT is typically performed within a time window and
on a pruned set to limit its otherwise exploding computational requirements.

On the other hand, assignment-based approaches to data association, such as SD
and 2D assignment, are discrete mathematical optimization formulations of the data
association problem and have been shown to be practical and feasible alternatives to



MHT. For SD assignment, the main challenge to overcome is that of solving the
ensuing NP-hard multidimensional assignment problem [29]. However, satisfactory
tracking and computational performance can be realized using existing SD assignment
algorithms that provide good suboptimal solutions, of quantifiable accuracy, and in
pseudo-polynomial time [16,17,26,28,31–33].

For sparse environments, MHT, SD, and JPDA are typically not necessary for
data association because little is gained in accuracy at the expense of large com-
putational overheads associated with these methods. Single-scan processing (i.e., 2D
assignment) is often practical since it has been shown to be a fairly efficient and
accurate approach to data association in such environments. With this approach, a
state estimator, such as a Kalman filter or an Interacting Multiple Model (IMM) [7]
state estimator, is embedded into the 2D assignment framework (e.g., weighted bi-
partite matching). The state estimator provides a score (i.e., likelihood) of how likely
a particular measurement from a given scan originated from a particular target track.
The problem is then one of finding an optimal assignment (using any well-known
(pseudo) polynomial-time assignment algorithm [5,11,22]), in a (global) maximum
likelihood sense, of measurements from the latest scan to the most likely tracks from
the previous scans.

1.2. State estimation

Inherent to many typical andyor realistic multitarget tracking (surveillance) prob-
lems is: (i) the existence of multiple targets in the surveillance region, and (ii) uncertain
target dynamics, namely, target motion having constant course and speed (non-
maneuvering) segments interspersed with arbitrary maneuvers (often characterized as
piecewise constant). The classical Kalman filter – the workhorse of state estimation –
has been found to provide only marginal tracking performance for such problems
because of the single motion model assumption [7,8]. In contrast, by using different
state equations in different time intervals, the IMM state estimator [7] is capable of
automatically adapting itself to different modes of target motion, and has exhibited
excellent tracking performance for various multitarget tracking problems [8,46]. How-
ever, the IMM estimator also imposes an increased computational burden in terms of
additional state estimates, covariance calculations, and likelihood function evaluations.

A literature survey [3,4,18,40] of parallel state estimators reveals a plethora of
fine-grained parallelizations proposed over the years. Typically, many numerically-
intensive computations inherent to state estimation are parallelized, such as coordinate
transformations, state and covariance estimates, linear algebraic operations such as
matrix multiplication, Cholesky (square root) factorization, and inner products. How-
ever, for multitarget tracking problems, a fine-grained parallelization proves to be
computationally inefficient because it is static (fixed) within  the state estimator. An
alternative, as we propose in this research, is a coarse-grained (dynamic) parallel-
ization across multiple track states, where, unlike a fine-grained parallelization,
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excellent computational performance is obtainable independent of numerous factors
influencing problem size (e.g., many models in the IMM, denseycluttered environ-
ments, contentious target-measurement data, etc.) [37,38].

1.3. Parallelization

With a data association algorithm in hand and, given a parallel architecture (i.e.,
shared-ydistributed-memory), important tasks to resolve in developing an efficient
parallelization are: (i) analyze a dynamically changing time-varying workload, (ii)
identify (in)dependent tasks within the computation, and (iii) distribute the workload
across the processor set in such a way as to maximize computations (of independent
tasks) proceeding in parallel, while minimizing interprocess communication (IPC),
synchronization overheads, queueing delays, and load imbalances. Concerning (i)
and (ii), even for relatively sparse multitarget problems, such as civilian air traffic
surveillance, workload analysis (see table 1) shows that, contrary to conventional
wisdom, the interface to the data association problem, namely, computing the rather
numerous independent gating and IMM state estimates, covariance calculations, and
likelihood function evaluations (used as cost coefficients in the 2D assignment prob-
lem), is the major computational bottleneck (rather than the data association problem
itself).

Concerning (iii), in particular, as it pertains to a distributed-memory system, a
task allocation algorithm must be considered as part of the parallelization since, with-
out one, such systems tend to quickly become unbalanced [12,13,20,21,41–44]. In
general, the objective of a task allocation algorithm is one of finding an allocation of
tasks (jobs) across a set of distributed processors to minimize workload imbalances.
To date, most task allocation algorithms proposed in the literature can be classified
as employing graph-theoretic [30,41], mathematical programming [13], or dynamic
(heuristic) [20,21,44] techniques. Techniques based on the former two are often in-
feasible and impractical for many realistic problems because: (i) enumerative searches
in seeking optimal solutions are often required, (ii) task processing and communication
costs are assumed static and known, a priori, and (iii) IPC costs among tasks are
assumed dominant, with a tendency to over-allocate tasks onto a single processor,
consequently creating increased workload imbalances. Alternatively, as we demon-
strate in this research, dynamic approaches are attractive because often they are fast,
extensible, considerably less complex, and react well to a dynamically changing work-
load [20,21,44]

1.4. Scope

We begin this paper by describing in section 2 our multitarget tracking problem
(i.e., a sparse air traffic surveillance problem based on two FAA air traffic control
radars) and our serial multitarget tracking algorithm in terms of its core components.
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In section 3, we motivate the parallelization work associated with this research by
providing a workload analysis of our multitarget tracking algorithm. In sections 4
and 5, we present brief expositions of both a shared- and distributed-memory parallel-
ization of our multitarget tracking algorithm, developed on a general-purpose shared-
memory MIMD multiprocessor system and a distributed-memory Intel Paragon high-
performance computer (HPC), respectively. In section 6, we describe in detail several
dynamic (heuristic) task allocation algorithms developed for the distributed-memory
HPC parallelization of our multitarget tracking algorithm. Using our air traffic
surveillance measurement database, in section 7, we provide comprehensive results
demonstrating the excellent performance of the described parallelizations. In section 8,
we provide concluding remarks.

2. Multitarget tracking algorithm

In this section, we provide a brief discussion of our multitarget tracking algo-
rithm, termed IMM-2D, illustrated in figure 1. The algorithm consists of four primary
components: (i) Obtain Scan Measurements, (ii) the Data Association Interface Prob-
lem which, in our tracking approach, is primarily concerned with coarse and fine gating

Figure 1. Multitarget tracking algorithm (IMM-2D) block diagram.

(defined shortly) and IMM state estimation, (iii) the Data Association Problem (via
a 2D assignment problem), and (iv) Track Formation and Maintenance. Interested
readers can find a more thorough presentation of IMM-2D in [34–37,45,46].

2.1. Obtain scan measurements

Since it is not the main focus of this paper, we omit presenting details concerning
the radar sensor systems used in this work and simply refer interested readers to
appendix A and [45] for more details. For the air traffic surveillance problem con-

R.L. Popp et al.  Parallelizations of assignment-based data association 297



sidered in this work, scans of (radar) measurements from two L-band FAA air traffic
control radars were reported and collected (approximately every 10 seconds apart).
One radar was located at Remsen, NY, where 26 scans were collected, while the other
radar was located at Dansville, NY, where 29 scans were collected. A particular scan,
say scan k, consists of M(k) detection reports containing a number of primary radar
(skin) returns (i.e., slant range, azimuth angle) and secondary (beacon) returns (i.e.,
slant range, azimuth angle, altitude). Because state estimation is done in a three-
dimensional (3D) Cartesian coordinate system, conversion from a radar’s polar frame
of reference is necessary [9,46].

2.2. Data association interface problem

In this section, we describe the two tasks that must be performed when interfacing
with the data association (2D assignment) problem, specifically, state estimation, via
an IMM estimator, and various coarse and fine gating  tests. Of these two tasks, the
former is the single most costly  in terms of processing cost , and comprises a significant
fraction of the workload in IMM-2D.

2.2.1.  IMM state estimation
For the air traffic surveillance problem used in this work, the IMM was employed

for state estimation. Since it is not the main focus of the present work, we omit a
detailed exposition of the IMM here and simply provide a brief discussion of the state
estimation problem in general. Interested readers can refer to appendix B and [7,9]
for a more detailed presentation of the material.

State estimation provides: (i) a  score of how likely a particular measurement
from a given scan originated from a particular target track, i.e., it provides a  measure-
ment-to-track association likelihood that serves as the basis for an assignment cost
coefficient in the 2D assignment problem, and (ii) an estimate of the target state. In
the state estimation problem, we assume that the target state evolves according to a
known linear dynamic model, corrupted by process noise, and driven by a known
input, i.e.,

x(tmk ) = F(δ )x(tmk −1 ) + G(δ )υ(tmk − 1), (2.1)

where, in the present work, x( ⋅ ) = [ξ ˙ ξ ′ ]  is a second-order kinematic model with 3D
coordinates ξ, δ = tmk − tmk − 1  is the time interval, F(·) is the state transition matrix,
G(·) is the disturbance matrix, and υ(·) is zero-mean, white Gaussian process  noise
with (known) covariance matrix Q(·). Furthermore, the measurements are linear func-
tions of the target state corrupted by measurement noise, i.e.,

z(tmk , mk ) = H x(tmk ) + w(mk ), (2.2)

where mk =1,…, M(k) denotes the mkth measurement from the k th scan, H is the
measurement matrix, and w(·) is zero-mean, white Gaussian measurement noise with
(known) covariance matrix R(·).
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2.2.2.  Coarse and fine gating
To reduce the number of likelihood functions to evaluate in the IMM which, in

terms of processing cost, is the single most costly operation to perform, gating  – a
pruning technique to filter out highly unlikely candidate associations – is used. A track
gate is the region in measurement space in which the true measurement of interest
will lie, in view of all uncertainties, with some (high) probability [9]. A measurement
within the gate is a candidate for association to the corresponding track.

Define the set of candidate associations at the k th scan by

  C(k) Õ{(n, mk ) : (n, mk ) ∈ N(k − 1) × M(k)}, (2.3)

where N(k – 1) × M(k) denotes the cross product of the track and measurement sets,
with jC(k)j = N(k – 1)M(k). In IMM-2D, for each (n, mk) ∈C(k), a coarse gating test
is first invoked, denoted by

  Gc :C(k) → {0,1}, (2.4)

which consists of a maximum velocity gate and, if applicable (i.e., measurement falls
within track’s maximum velocity gate), a high process noise Kalman filter elliptical
gate. Gc(n, mk) = 1 denotes that measurement mk fell within both of track n’s maximum
velocity and elliptical gates, while Gc(n, mk) = 0 denotes that measurement mk fell
outside either of track n’s gates. For maximum velocity gating, we use the following
test:

  

k z(tmk
, mk ) − H ˆ x (tmk − 1

)k
(tmk

− tmk − 1
)

>? MAX_SPEED, (2.5)

where the relation “ >? ” compares the left-hand side term with the right-hand side term
and returns true if the former is greater than the latter, and false otherwise. The residual
terms in the numerator above are defined as follows: z(tmk

, mk) is the mkth measurement
in scan k having time stamp tmk

, H is the measurement matrix, and ˆ x (tmk − 1 )  is the
track state estimate at time tmk –1

. The MAX_SPEED parameter is an assumed upper
bound on the target’s maximum velocity. For elliptical gating, we use a likelihood
ratio test, i.e.,

− log
PDΛk f (n, mk )

Λ(0, mk )

 
  

 
  >? 0, (2.6)

where Λkf (·) denotes the likelihood function specified in the Kalman filter, the detec-
tion probability PD = 0.95 is based on FAA standards [45,46], and the false alarm pdf
Λ(0, mk) is the spatial density of the false measurements (assumed uniformly probable
over the sensor’s field of view) [9].

Define the set of candidate measurement-to-track associations passing the coarse
gating test Gc(·) by

  L(k)Õ {(n, mk ) ∈C(k) :Gc(n, mk ) = 1}, (2.7)
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where each (n, mk) ∈L(k) requires the application of a fine gating test (based on a
negative log-likelihood function to be defined in section 2.3). Denote the fine gating
test by
  G f : L(k) → {0,1}, (2.8)

where Gf (n, mk) = 0 denotes that candidate association (n, mk) is not to be considered
in the 2D assignment problem because it is more likely that measurement mk corre-
sponds to a false alarm than to track n. Conversely, Gf (n, mk) = 1 denotes that candidate
association (n, mk) is to participate in the 2D assignment problem, where the cost of
assigning measurement mk to track n is cnmk

 < 0 (defined next).

2.3. Data association problem

Data association is the decision process of linking measurements (from succes-
sive scans) of a common origin (i.e., a target or false alarm) such that each measure-
ment is associated with at most one origin. In IMM-2D, we formulate the data
association problem as a 2D assignment problem. Specifically, M(k) measurements
from the latest scan k are to be assigned to the N(k – 1) most likely existing tracks
from the previous scans using a global cost minimization function [9] (based on a
maximum likelihood function). Specifically, let n = 0,…, N(k – 1) denote a particular
track from the set of existing tracks (including a dummy track n = 0), and mk = 0,…,
M(k) denote a particular measurement from the latest set (scan) of measurements
(including a dummy  measurement mk = 0). Define the binary assignment variable

χnmk =
1 if mk is assigned to n,

0 otherwise.

 
 
 

  
(2.9)

Note that χn0 = 1 implies that track n is unassociated and has missed a detection in the
latest scan. Furthermore, χ0mk

 = 1 implies that measurement mk is unassociated, i.e.,
not assigned to any of the N(k – 1) existing tracks, but, instead, assigned to the dummy
track (false alarm or new track initiation). Since measurement errors within a scan are
independent of each other, maximizing the likelihood ratio, consisting of the joint
pdf-probability [7,9] of measurements given their origins and the corresponding detec-
tion events, over the set of feasible assignments can be cast into the following 2D
assignment problem:

(2.10)minimize
n = 0

N(k −1)

∑ cnmk
χnmk

mk = 0

M (k)

∑

subject to χnmk
= 1,

mk = 0

m( k)

∑ n = 1,… , N(k − 1),

n= 0

N (k − 1)

∑ χnmk
= 1, mk = 1,… , M(k),
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where the cost of assigning measurement mk to track n is

  

cnmk =

0 if n or mk = 0,

− log
Λ(n, mk )
Λ(0, mk )

 
  

 
  if − log( ⋅ ) < 0,

` otherwise.

 

 
  

 
 
 

(2.11)

The numerator in the above expression, – log(·), which is based on the likelihood
function Λ(·) from the IMM estimator (via equation (B.5) in appendix B), is the likeli-
hood that the mkth measurement at scan k originated from the n th track, and the
denominator is the likelihood that the mkth measurement corresponds to none of the
existing tracks (e.g., a false alarm). The occurrence of false alarms is assumed uni-
formly probable over the sensor’s field of view (see appendix A and [46]).

2.4. Track formation and maintenance

The following measurements, unassociated in the 2D assignment problem, are
used to initialize new tracks and are denoted as the track formation set, i.e.,

Initializing (forming) tracks based on a single measurement is somewhat different
from the common two-point differencing technique [7]. However, in air traffic sur-
veillance, this approach is sufficient since the difference in times between scans is
often relatively short.

The following tracks, denoted as the track maintenance set, are extended (the
corresponding state vector is updated via equation (B.10) in appendix B) with new
measurements at scan k based on the solution to the 2D assignment problem, i.e.,

  

T F(k) Õ
{1,… , M(k)} k = 1,

mk : χ0mk
= 1,

mk = 1,… , M(k)
 
 
 

 
 
 

k > 1.

 
 
 

  
(2.12)

  T M(k)Õ {n : χnmk
= 1, n = 1, … , N(k − 1), mk = 1,… , M(k)}. (2.13)

The following tracks, denoted as the drop track set, are terminated (dropped) if
the tracks do not get updated with measurements from the 2D assignment problem
within a drop track threshold γ of consecutive scans, i.e.,

  

T D(k) Õ
∅ k = 1,

n : γ n(k) > γ ,

n = 1,… , N(k)
 
 
 

 
 
 

k > 1,

 

 
 

 
 

(2.14)

where γ spans approximately 100 seconds (γ = 20) in this work, and γn (k), the track
age of the n th track at scan k, is the discrete difference, in scans, between the current
scan k and the most recent previous scan where track n was updated, i.e.,
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The second term on the right-hand side of equation (2.15) determines the scan number
at which track n was last updated, where the measurement history corresponding to
the n th track at scan k is defined by

  Φn(k) Õ{m j : χnm j
= 1, 1 ≤ j ≤ k − 1}. (2.16)

The track set at scan k after solving the data association problem is then

    

T (k )Õ
∅ k = 0,

T F (k) k = 1,

T M(k) < T F (k) − T D (k) k > 1.

 
 
 

  
(2.17)

3. Workload

A convention seen over the years in optimization research, namely, the inputs to
the optimization problem assumed given, a priori, and computationally insignificant,
would have yielded results far from beneficial for the relatively sparse optimization
(2D assignment) problem parallelized in this work. In taking a step back to examine
the entire scope of the problem at hand, we identified the interface to the optimization
problem as being the computational bottleneck. We suspect this has analogs in other
application areas as well.

Table 1

Workload distribution within IMM-2D.

IMM-2D
# of filter

component
models in IMM

1 (KF) 2   3   5   

Obtain scan measurements 0.8% 0.6% 0.5% 0.3%

Data association interface (gating, IMM) 94.3% 94.7% 95.2% 96%

Data association problem (2D assignment) 1.1% 0.8% 0.6% 0.2%

Track maintenance and formation 3.8% 3.9% 3.7% 3.5%

Specifically, as shown in table 1, the vast majority of the workload in IMM-2D
comprises processing the set of candidate associations in interfacing with the 2D
assignment (data association) problem. In fact, this constitutes 94.3%, 94.7%, 95.2%,
and 96% of the workload when IMM-2D is configured with 1, 2, 3, and 5 filter models
in the IMM, respectively. Recall, as described in section 2.2, interfacing with the
data association problem consists of performing numerous gating and 2D assignment
cost coefficient calculations (based on the likelihood function from the IMM state

γ n (k) = max
j

{j : m j ≠ 0, m j ∈Φn( k), 1 ≤ j ≤ k − 1}. (2.15)
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estimator). If one were to follow conventional wisdom in this optimization problem,
namely, target the assignment algorithm itself for parallelization, 1.1%, 0.8%, 0.6%,
and 0.2% of the workload would have been parallelized, respectively.

Clearly, for a sparse air traffic surveillance problem such as the one we have
here, a parallel assignment algorithm would yield, at best, minimal benefits. However,
although not negating the significance of the interface problem, for dense air traffic
surveillance problems, where data association may subsume a significant fraction of
the total computation, a parallel assignment algorithm, such as those described in
[5,11,22], would provide increased benefit. In this work, since it is the significant
computational bottleneck, we developed parallelizations of the interface to the 2D
assignment (optimization) problem in IMM-2D.

4. IMM-2D shared-memory parallelization

The shared-memory computing environment used for this work consisted of
several general-purpose MIMD multiprocessors, namely, a 2- and 4-processor SPARC-
station 20, and a 12-processor SPARCcenter 2000. A simple model of the 4-processor
SPARCstation 20 architecture is illustrated in figure 2. The software utilized consisted
of Solaris 2.4.2, which includes the SunOS 5.4.2 UNIX operating system (OS) and

Figure 2. Model of shared-memory architecture.

the multithreaded system architecture, which we used as our parallel processing inter-
face. Multithreading separates a UNIX process into lightweight independent threads,
each of which (concurrently) executes a sequence of the process’s instructions. Threads
are dispatched across the processor set indirectly via a two-level scheduling hierarchy.
Threads implicitly communicate via shared memory; consequently, synchronization
mechanisms (e.g., mutual exclusion) must be supported to allow threads to cooperate
in accessing shared data.

R.L. Popp et al.  Parallelizations of assignment-based data association 303



The coarse-grained shared-memory parallelization developed for the data assoc-
iation (2D assignment) interface problem in IMM-2D is based on the supervisory
worker model (see figure 3). The supervisor thread initially forks some number of
worker threads, say p, to process the set of candidate associations, C(k), defined by
equation (2.3) in section 2.2.2. Once forked, the supervisor awaits processing of C(k)
to be completed by the p worker threads via a join operation. Worker threads, asyn-
chronously and in parallel, process some (parameter) number of candidate associations
per serialized critical section access across mutually exclusive track and measurement
data. Recall that the processing of a candidate association consists of performing two
coarse gating tests (the second is performed only if the first succeeds) and, if both
gating tests succeed, a fine gating test is applied, i.e., a negative log-likelihood score
is calculated based on equation (2.11). Since the processing cost corresponding to
each candidate association is not uniform, maximum load balancing is achieved by
dynamic allocation of candidate associations across threads. Upon completing process-
ing of C(k), the supervisor solves the global 2D assignment problem.

5. IMM-2D distributed-memory parallelization

The distributed-memory computing environment used for this work consisted of
a 32-node Intel Paragon HPC. Hardware specifications for the Paragon are illustrated
in figure 4. Paragon OSFy1, a subset of the standard OSFy1 UNIX operating system,
based on the Mach 3.0 microkernel, is a distributed OS that is resident on all nodes.
Due to the lack of multithreading support in Paragon OSFy1 at the time of this work,
only one of the processors within each node was utilized. Because the Paragon is a
distributed-memory architecture, processors communicate with one another using
messages via a message-passing interface (MPI) supported by Paragon OSFy1.

The distributed-memory parallelization developed for the data association (2D
assignment) interface problem in IMM-2D is also based on the supervisoryworker
model (see figure 5). Specifically, p workers process, in parallel, the set of candidate

Figure 3. Task graph of IMM-2D shared-memory parallelization.
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Figure 4. Model of distributed-memory architecture.

Figure 5. Task graph of IMM-2D distributed-memory parallelization.

associations, C(k), based on their mutually exclusive and exhaustive local track sets.
Upon completing processing, workers asynchronously send to the supervisor messages
containing a list of tuples consisting of track IDs, measurement IDs, association costs
(i.e., 2D assignment cost coefficients), and workload bids (defined shortly). Upon
collecting all such lists, the supervisor solves the global 2D assignment problem. The
assignment list is then broadcast to all workers, enabling them to update (extendydrop)
existing tracks andyor initialize (form) new tracks. The critical issue for the distributed-
memory parallelization is the allocation of new tracks (tasks), namely, the set of
unassociated measurements from the 2D assignment problem (i.e., the track formation
set TF(·) defined by equation (2.12)), across the worker processor set in such a way
that load imbalances are minimized.
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6. Task allocation problem

Each of the dynamic (heuristic) task allocation algorithms developed in this work
assume that tasks are equivalently executable logically on any homogeneous processor.
We developed source-initiated, non-preemptive task allocation algorithms, that is, once
assigned by the supervisor, a task stays assigned for the duration of its lifetime (until
the track is dropped). No a priori assumptions are made about the task size (cost). All
but one algorithm use bidding in allocating tasks, i.e., the supervisor seeks bids from
all workers via a (past, present, or predicted future) workload cost, and, based on such
bids, selects the lowest bidders to assign new tasks.

6.1. Task definition

For the problem at hand, we define a task to be a track’s inseparable set of
candidate associations to process over the lifetime of the track. The task communi-
cation cost is negligible since tasks do not communicate amongst one another, whereas
the task processing cost, namely, the gating tests and likelihood function evaluations,
is significant. Moreover, the task processing cost is uncertain at the time of task
allocation. Consequently, heuristic solutions to the task allocation problem are neces-
sary, where the workload, namely, the processing of candidate associations, is to be
distributed across the processor set indirectly via an allocation of tracks.

We chose a track as the task granularity, as opposed to an individual candidate
association, for the following reasons. Allocating n tracks across p processors has
space complexity of O(n), whereas allocating candidate associations has complexity
of O( pn). Furthermore, an increase of roughly three orders of magnitude in message
size ensues when allocating individual associations versus tracks, i.e., the former
requires entire track states to be communicated, whereas the latter requires only track
IDs.

6.2. Problem formulation

Given p worker processors, say i = 1,…, p, define the i th worker’s local track
formation set at scan k, after the 2D assignment problem has been solved, by

  T i
F (k) Õ {mk : mk = i(mod p), mk ∈TH (k )}, (6.1)

where (mod p) denotes the modulus p operation and TH(k) the mapped track forma-
tion set at scan k, is determined by a mapping function H( · ) defined (forthcoming)
by the task allocation algorithm.

Per scan, after solving the 2D assignment problem, the supervisor broadcasts to
the worker processors the re-mapped assignment list, i.e.,

    A(k)Õ TM (k) TH ( k),U (6.2)
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where TM(k) is the track maintenance set as defined in equation (2.13) and TH(k),
the mapped track formation set, is determined by a (one-to-one) mapping function,

In effect, H(·) maps the IDs of new tracks to initialize from TF(k) to TH(k) in such
a way that tracks in TH(k), having possibly remapped track IDs, become allocated
(by way of the modulus operator) to the appropriate worker’s local track set Ti(k) via
its track formation set Ti

F (k).

6.3. Dynamic task allocation algorithms

We now briefly present five dynamic task allocation algorithms developed as
part of this work. Critical to the performance of each task allocation algorithm is the
basis and effectiveness of the bid (cost) obtained from workers in measuring the
workload. Interested readers can find a more thorough description of the algorithms
in [34–36].

6.3.1.  Cyclic modulo p
The allocation of tasks for this heuristic is based on a (static) uniform cyclic

splitting scheme via the modulus p operator. Per scan, the supervisor cycles through
the set of p workers assigning to each worker, in turn, the next assignable track. Un-
like a cooperative solution, this heuristic does not incorporate workload information
sharing between the supervisor and workers. However, although a uniform distribution
of tracks follows, a uniform distribution of tasks (i.e., workload) may not. The mapped
track formation set, determined by H(·), is defined by

  T
H (k)Õ{H(mk j ) : H(mk j ) = N(k − 1) + j , j = 1, …,jT F(k)j, mk ∈T F( k)}. (6.4)

6.3.2.  First-come first-served (FCFS)
The allocation of tasks for this heuristic is based on the FCFS discipline. Per

scan, the supervisor infers the degree of each worker’s workload relative to all workers
based on the order in which workers report back to the supervisor with their lists of
tuples, i.e., workers reporting early are assumed to have a lighter workload. Based on
the workers’ report ordering, the supervisor makes the appropriate load balancing
decisions. Specifically, if

    ω p1(k)` ω p2 (k)`L`ω p p (k),

where ωpi(k) ` ωpj
(k), 1 ≤ pi , pj ≤ p, i ≠ j, implies worker pi  reported back to the

supervisor before worker pj , then define the mapped track formation set, determined
by H(·), as the set of track IDs mapped to workers pi , i = 1,…, p via their local track
formation sets TF

pi(k) based on the above ordering, i.e.,

  H : T F(k) → T H (k). (6.3)
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6.3.3.  Track age
The allocation of tasks for this heuristic is based on a dynamically changing

statistical track age metric, which, per scan, serves as an indicator of the present state
of the workload. The motivation for this heuristic is as follows. A mature track (i.e., a
track not updated in the data association problem over many scans), will have large
spatial gates with many candidate measurements to associate with, and, consequently,
induce an increase in workload due to additional likelihood function evaluations
[34,35]. At scan k, recalling that γni(k), defined in equation (2.15), denotes the age of
the nith track in local track set Ti(k – 1), the i th worker will have tracks with ages

  
T H (k)Õ

H (mkj
) : j = 1, …,jT F (k)j,

mk ∈T F(k ),H(mk j
) = min{n : n = pj (mod p), N(k −1) < n < H (mkj +1

)}

 
 
 

  

 
 
 

  
.

 (6.5)

  Γi (k) Õ {γ ni (k) : ni ∈T i(k − 1), ni = 1,  2, … , N i(k − 1)}. (6.6)

The mean track age of tracks in T i(k – 1) at scan k is

γ i (k) = 1
N i(k − 1) ni =1

N i (k−1)

∑ γ ni
(k) (6.7)

and the range (variance) of track ages of tracks in Ti(k – 1) is

∆i (k ) = max
ni ≠ nj

1≤ ni ,nj ≤ Ni (k−1)

{γ ni
(k) − γ n j

(k)}. (6.8)

Define the normalized present workload cost for the i th worker at scan k by

ωi(k) = 1
γ

(γ i (k) + ∆ i(k)) + Ni (k − 1)
N(k − 1)

, (6.9)

where γ refers to the drop track threshold described previously. Each worker sends to
the supervisor, in addition to its list of tuples, a task allocation cost (bid) defined by
equation (6.9). Tracks from the mapped track formation set TH (k) are allocated to
workers having the smallest workload costs (lowest bids). Assume, without loss of
generality, that the workload costs for the p workers are ordered as follows:

  ω p1
( k) ≤ ω p2

(k) ≤ L ≤ ω p p (k),

where ωpi(k) ≤ ωpj
(k), 1 ≤ pi , pj ≤ p, i ≠ j, implies worker pi  has less present workload

cost than worker pj. Hence, as in the previous case, TH (k) is defined by equation
(6.5).

6.3.4.   1-step # likelihood evaluations predictor
The allocation of tasks for this heuristic is based on a predicted  number of likeli-

hood functions to evaluate at the next scan, based on a state feedback estimator. Per
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scan, this metric serves as an indicator of future workloads based on the past and
present likelihood histories. In (low-) high-pass mode, the estimator monitors the (past)
present workload and reacts (slowly) quickly to changes in the state. Let λi(k) denote
the number of likelihood functions evaluated by the i th worker at scan k. Define the
predicted number of likelihoods to be evaluated by the i th worker at scan k + 1 by

ˆ λ i (k + 1) = α ˆ λ i(k) + (1 − α)λ i(k), (6.10)

where α is a tuning parameter. Assume, without loss of generality,

  ω p1
( k) ≤ ω p2

(k) ≤ L ≤ ω p p (k),

where ω pi
(k) = ˆ λ pi

(k + 1)  as defined by equation (6.10). Again, TH (k) is defined by
equation (6.5).

6.3.5.   Mean # likelihood evaluations
The allocation of tasks for this heuristic is based on the mean number of likeli-

hood functions evaluated, which, per scan, serves as an indicator of past or present
workloads. In the ideal load balanced case, each worker would have a proportional
number of likelihoods to evaluate, i.e.,

λ (k) = 1
p

λi (k).
i =1

p

∑ (6.11)

Define the (present) mean workload cost for the i th worker at scan k by

ωi(k) = λi (k)
λ (k)

. (6.12)

Similarly, in general, if we want to take into account past workloads, over k scans,
each worker would have a proportional number of likelihoods to evaluate, i.e.,

λ = 1
p l = 1

k

∑ λi(l).
i = 1

p

∑ (6.13)

Thus, define the (past) time-averaged workload cost for the i th worker at scan k by

βi(k) = 1
λ 

λi(l).
l =1

k

∑ (6.14)

Assume the mean (time-averaged) workload costs are ordered as follows:

  

ω p1
(k) ≤ ω p2

(k) ≤ L ≤ ω p p
(k),

βp1
(k) ≤ βp2

(k) ≤ L ≤ βp p
(k),
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respectively, where, in both expressions, ω pi
(k) ≤ ω p j (k),  (βpi

(k) ≤ βp j (k)),  1 ≤ pi ,
pj ≤ p, i ≠ j, implies worker pi  has less mean (time-averaged) workload cost than
worker pj. Again, as before, TH (k) is defined by equation (6.5).

Thus, to summarize, in table 2 we provide the general characteristics of each of
the presented task allocation algorithms used in the distributed-memory parallelization
of IMM-2D. The heuristic algorithms are organized in terms of increasing time and
space complexity. Note that in the Information reactiveness column, low-pass implies
a slowly-varying (conservative) task allocation algorithm, whereas high-pass implies
a rapidly-varying (aggressive) task allocation algorithm.

Table 2

Characteristics of task allocation algorithms.

Heuristic Behavior
Share Basis of cost Information Rel. overhead
info. (workload) reactiveness time and space

mod p static no none low-pass none

FCFS dynamic no present high-pass low

ˆ Λ ( α → 0) dynamic yes mostly present high-pass moderate
ˆ Λ ( α → 0.5) dynamic yes past and present moderate moderate
ˆ Λ ( α → 1) dynamic yes mostly past low-pass moderate

Λ ( ω i ( k)) dynamic yes present moderate moderateyhigh
Λ ( β i ( k )) dynamic yes past and present low-pas moderateyhigh

track age dynamic yes present moderate high

7. Results

7.1. Preliminaries

When presenting the performance of the various parallelizations of IMM-2D,
we use a conventional formulation for parallel efficiency, i.e.,

  
E = τ1

pτ p
, (7.1)

where τ1 denotes the sequential execution time utilizing 1 processor, and τp denotes
the parallel execution time utilizing p processors. Furthermore, the correlation co-
efficient plot in figure 9 is based on a standard formulation, i.e.,

ρii (k) = rii(k)
rii(0)

, (7.2)

where the auto covariance function, given mean y i, is defined as
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7.2. Shared-memory parallelization results

In this section, based on the 2-, 4-processor SPARCstation 20s, and the 12-
processor SPARCcenter 2000, we demonstrate the computational performance of the
coarse-grained parallelization of IMM-2D, making comparisons with both a fine-
grained parallelization and a serial implementation of IMM-2D. In the fine-grained
parallelization, the multiple filter models of the IMM estimator are evenly distributed
across the processor set in a manner similar to the approach described in [3,4]. Since
the multiprocessors used in this work are time-shared systems, the execution times of
IMM-2D depended, in part, on random system events such as the system load and
thread schedule order. Consequently, Monte Carlo simulations were performed, and
all results presented represent the means of those simulations with standard errors
less than 3%.

In figure 6, we plot the execution times of the sequential, the coarse- and fine-
grained shared-memory parallelizations of IMM-2D on the 2- and 4-processor SPARC-
station 20. Note that Mach 2  and Mach 5  simply denote the speed of an aircraft to be

rii(k) = 1
S − 1

[yi(s) − y i] [yi (s − k) − y i].
s =1

S

∑ (7.3)

Figure 6. Execution time of IMM-2D on a 2- and 4-processor SPARCstation 20 using various
coarse gating policies. Horizontal axis denotes # of filter models in IMM configuration.
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two and five times the speed of sound, respectively. The significance of these two
parameters is as follows. As described in section 2.2.2, one of the coarse gating policies
employed in IMM-2D is based on an aircraft’s maximum velocity. Increasing the
magnitude of the Mach parameter will increase the spatial area of the track’s maximum
velocity gate, thus increasing the processing cost associated with the track since a
greater number of measurements will fall within the gate.

Clearly, the coarse-grained parallelization demonstrates superior execution time
performance over the fine-grained parallelization for any number of models used in
the state estimator. Moreover, the performance of the fine-grained parallelization is
dependent on the number of models used, yielding marginal performance improve-
ments only when using an unrealistically large number of filter models. Furthermore,
when configured with a small to moderate number of IMM models (< 3 which is
considered sufficientysuitable for air traffic surveillance problems), the fine-grained
parallelizations yield execution time greater than sequential time.

Figure 7. Parallel efficiency of IMM-2D on a 2- and 4-processor SPARC-
station 20 using various coarse gating policies. Horizontal axis denotes

# of filter models in IMM configuration.

In figure 7, we plot the parallel efficiency for both the coarse- and fine-grained
shared-memory parallelizations of IMM-2D. Clearly, as figure 7 illustrates, the com-
putational performance of the coarse-grained parallelization is independent of the
number of filter models used in the IMM estimator, whereas the fine-grained parallel-
ization performs rather inefficiently unless the number of filter models used is

     11
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unrealistically high. Furthermore, as shown in figure 7, near-unity efficiency and,
given a large enough problem (e.g., 2 processors using Mach 5 coarse gating policy),
even greater than unity efficiency (i.e., superlinear speedup) is possible. When non-
algorithmic issues such as context switches, effective memory size and access costs,
and scheduling order are considered, superlinear speedups in practice may indeed
occur [23,25].

Many factors determine the scale-up performance of a parallel algorithm, in
particular, the multiprocessor architecture and the problem size are directly related. In
the context of multitarget tracking, the problem size is a function of numerous factors,
including the number of actual and false alarm tracks, noiseyclutter intensity, target
density, contentiousness of the target-measurement data, and the number of filter
models used in the IMM. When considering the scalability of IMM-2D, a highly
desirable feature would be for it to maintain the same high level of performance (e.g.,
efficiency) on larger multiprocessor systems as it did on the smaller ones, and do so in
terms of any of the factors that can influence the problem size. Certainly, IMM-2D
having this property would make it robust, and it could easily adapt, without modifi-
cation, to other diverse multitarget tracking problems.

Unlike the fine-grained parallelization, the coarse-grained parallelization of
IMM-2D scales when any of the factors influencing problem size increase. In particu-
lar, in figure 8, we plot the speedup for the coarse-grained parallelization on a 12-
processor SPARCcenter 2000 for several problem instances. In (Instance (original)),
all factors influencing the problem size are unchanged, whereas, in (Instance (+500%))

Figure 8. Speedup of IMM-2D on a 12-processor SPARCcenter
2000 for several problem instances. Horizontal axis denotes # of

filter models in IMM configuration.
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and (Instance (+1500%)) , a more dense multitarget scenario was simulated by in-
creasing the problem size (relative to (Instance (original))) in terms of track set size
by 500% and 1500%, respectively. From the plot, we can see marginal speedup results
when the problem size is too small (i.e.,  (Instance (original))) for this particular
multiprocessor system. However, as the problem size increases, the scalability of the
coarse-grained parallelization is evident, approaching near-linear speedup with fewer
filter models, and linear with many.

7.3. Distributed-memory parallelization results

For the distributed-memory parallelization, we present performance results for
IMM-2D on the 32-node Intel Paragon HPC using the various task allocation algo-
rithms described in this paper. However, before discussing performance issues, for
IMM-2D to benefit from load balancing in a distributed-memory environment, the
degree of randomness in the workload across worker processors must be assessed. If
purely random, then anything we do in terms of load balancing will be futile. In fact,
only if some degree of correlation exists, across scans, in the workload should load
balancing be pursued.

Figure 9. Auto covariance of association costs and computation
time of IMM-2D on the Intel Paragon using the mod p heuristic

for the task allocation algorithm.

In figure 9, we plot, over scans processed, the auto covariance function, in terms
of association costs computed (where a likelihood function based on the IMM was
evaluated) and computation time, for the maximum and minimum loaded workers.

   Lag

              60

   60
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Figure 9 provides a statistical indication of the randomness in the workload by corre-
lating, across scans, both the association costs computed and computation time for
the maximum and minimum loaded workers based on using the mod p heuristic in the
task allocation algorithm. Clearly, for lags with run [0, 5], a correlation exists (>50%),
namely, heavily (lightly) loaded workers tend to retain the same level of workload in
the near future, i.e., within 5 scans. Hence, because the workload is not purely random,
candidate associations can be allocated, indirectly, in such a way as to ensure load
balancing.

As illustrated in figure 10, the execution time of the distributed-memory parallel-
ization of IMM-2D is plotted using the various task allocation algorithms presented.
Not only do they all yield very similar execution time performance, figure 10 shows
a near-linear decrease in time over the number of processors p. However, in terms of
scale-up, the execution time performance curve for IMM-2D started to flatten out

Figure 10. Execution time of IMM-2D on the 32-node
Intel Paragon using various task allocation algorithms.

considerably at 25 nodes. At >32 nodes, the performance curve for IMM-2D started
to increase. Since there are numerous factors that can influence the problem size in a
multitarget tracking problem, scale up analysis is rather difficult. Consequently, we
leave it as a future endeavor to perform this analysis properly.

In figure 11, we plot the efficiency of the distributed-memory parallelization of
IMM-2D using the various task allocation algorithms. The plots follow what we would
expect from a diminishing return function such as efficiency, i.e., for smaller p,
near-unity efficiencies are obtainable based on each of the task allocation algorithms,
whereas, for larger p, the efficiency diminishes.

   25
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Figure 11. Efficiency of IMM-2D on the 32-node Intel Paragon
using various task allocation algorithms.

Other interesting observations about figure 11 can be made. Firstly, the FCFS
heuristic consistently performed worse than the other heuristic algorithms. This occurs
primarily because the FCFS heuristic makes task allocation decisions based on an
inferior bid, i.e., the first worker to report back to the supervisor is not necessarily the
least loaded worker. Secondly, the simple static mod p heuristic performed rather well
in comparison to the dynamic, more complex information sharing heuristics. This
occurs primarily because of the additional overhead incurred by the latter heuristics,
i.e., sorting, a mapping of track IDs, and a task allocation bid function calculation.
Moreover, since IMM-2D was moderately loaded on the HPC for the given multitarget
problem, a random task allocation heuristic will, in general, provide a fairly balanced
load [12].

In table 3, we provide the mean efficiency improvement of the functions plotted
in figure 11 relative to the mod p heuristic. Consistent with other researchers [20,
21,43], table 3 shows that, in the context of multitarget tracking, relatively simple
heuristic task allocation algorithms can yield excellent performance in practice. In
general, IMM-2D performed best when the task allocation algorithm’s reactiveness to
information concerning the workload being shared between workers and the supervisor
was moderate. Specifically, a task allocation algorithm employing a complex heuristic
(e.g., track age, ˆ Λ , Λ ) provides, relative to the simple mod p heuristic, a decrease in
performance of –0.1 (i.e., ˆ Λ (α → 0) ) in the worst case and a marginal performance
improvement of 3.5% (i.e., ˆ Λ (α → 0.5) ) in the best case.

   25

25

25
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8. Conclusions

In this work, in the context of a sparse multitarget air traffic surveillance problem,
we showed (via workload analysis) that the interface to the data association (optimi-
zation) problem was the computational bottleneck, as opposed to the optimization
problem itself. We then described a coarse-grained shared-memory parallelization of
the data association interface problem that yielded excellent performance results, i.e.,
superlinear speedups, scalable, performance independent of numerous factors influ-
encing problem size, e.g., many models in the IMM, large trackyscan set sizes, or
contentious target-measurement multitarget data due to clutter, dense scenarios, andyor
coarse gating policies. In the case of a fine-grained parallelization, the performance
was dependent on the number of filter models used, yielding negligible throughput
for any number of filter models, marginal speedups when many models were used,
and worse execution time than sequential time when three or less filter models were
used. We then described an SPMD distributed-memory parallelization of the data
association interface problem that also yielded excellent performance (i.e., near-linear
speedups) configured with relatively simple task allocation algorithms. Furthermore,
consistent with other research efforts, in the context of multitarget tracking, we showed
that using relatively simple dynamic (heuristic) task allocation algorithms can offer
great promise in practice.

Appendix A: Sensor specifications

The sensor parameters for the radars are given in table 4, where fp is the pulse
repetition frequency, βθ is the vertical beamwidth, βφ is the horizontal beamwidth, τ
is the pulse width, Rmax is the maximum range, ∆r is the range resolution cell and c is
the speed of light. From the above sensor parameters, the range and azimuth standard
deviations (i.e., σr and σφ , respectively) are determined using the assumption that

Table 3

Efficiency improvement, relative to mod p, of IMM-2D
configured with various task allocation algorithms.

Mean efficiency improvement

  
δ (E g , E h ) = 1

p
E h (i )−E g (i )
E g (i)i = 1

p

∑

g h

mod p FCFS ˆ Λ ( α → 0)
ˆ Λ ( α → 0.5)

ˆ Λ ( α → 1) Track age Λ ( ω i ( k)) Λ (β i (k))

  δ (E g , E h ) ≈ – 3% – 0.1% 3.5% 1.5% 2% 1.5 0%
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the range and azimuth measurements are uniformly distributed in the corresponding
resolution cells. Hence,   σ r = ∆ry(2 3)  and   σφ = βφy(2 3) . The altitude standard
deviation σh = 17.6m and the probability of detection PD = 0.95 are chosen based on
FAA standards [45,46].

Table 4

Radar specifications.

fp (Hz) βθ βφ τ (µs) Rmax = cy(2 fp) ∆r = cτy2

R 340 5.4º 1.3º 6 441.2 km 0.9 km

D 350 3.75º 1.2º 1.8 428.6 km 0.27 km

The probability density function (pdf) of extraneous measurements (false alarms)
is the inverse of the sensor’s field of view volume, denoted by Ψ. We assume that Ψ
is approximately constant and proportional to the resolution cell volume, i.e.,
Ψ = K(∆t) (Rmax βθ) (Rmax βφ). The factor K (e.g., 33 = 27) is needed since the gate is,
in general, spread over several adjoining resolution cells.

Appendix B: IMM state estimation

The IMM estimator used in IMM-2D [46], illustrated in figure 12, is an aug-
mented version of the IMM estimation algorithm [7]. As figure 12 depicts, the various
computations involved in one cycle of the IMM estimator can be divided into: (i)
Interaction Mixing , (ii) Filtering, (iii) Update of mode and mixing probabilities, and
(iv) Combination of state estimates and covariances. The IMM assumes the motion
of a target for which a corresponding track will develop follows one of r possible
filter models (or modes) between two successive detections. The augmented IMM
estimator combines the likelihoods Λj(·), j = 1,…, r from the individual mode-matched
filters to yield an overall likelihood Λ(·). We omit detailed exposition of the IMM
algorithm here, since it is not the main focus of this paper, and simply present a brief
summary of the relevant equations. We refer interested readers to [46] for a more
descriptive presentation of the material.

The mixed state estimate and covariance are given by

  

P0 j (tmk − 1
) = [ ˆ x i(tmk − 1

) − ˆ x 0 j (tmk − 1
)]

i =1

r

∑ [ ˆ x i(tmk − 1
) − ˆ x 0 j (tmk −1

) ′ ] µij j(tmk − 1
)

+ Pi (tmk − 1
)µi j j(tmk − 1

).
i =1

r

∑ (B.2)

  
ˆ x 0 j (tmk −1 ) = ˆ x i (tmk − 1 )µ ij j (tmk − 1 ),

i =1

r

∑ (B.1)
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Figure 12. Augmented IMM estimator.

The mixing probability is given by

where   π ij Õ P{u(tmk ) = jju(tmk −1 ) = i}  is the model transition probability. The mode
probability is given by

The combined likelihood of the IMM estimator is given by

and each filter model (mode) likelihood function is given by

where the normalized innovation squared is

  
µ ij j (tmk − 1 ) =

µ i(tmk − 1
)

µi (tmk −1 )i = 1
r∑

, (B.3)

µ j(tmk ) =
Λ j (mk ) µ i(tmk − 1

)π iji =1
r∑
Λ(mk )

. (B.4)

Λ(mk ) =
j =1

r

∑ Λ j(mk )µ i(tmk −1 )π ij ,
i =1

r

∑ (B.5)

    Λ j (mk ) = j2π Sj (mk )j−1y2 exp − 1
2 α j (mk ){ } , (B.6)

α j (mk ) = ν j (mk ′ ) [Sj (mk )]− 1ν j (mk ), (B.7)
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and the measurement residual and residual covariance are

where δk = tmk
 – tmk–1

.
The updated state estimate and covariance are given by

where the filter gain is

(B.11)

And lastly, the combined state estimate and covariance are given by
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