Cyber and Cross-Domain Deterrence

Jacquelyn G. Schneider Naval War College

The views represented here are the author's alone, and do not reflect those of the Naval War College or US Navy.

Cyberspace Deterrence: Two Sides

- 1. Cross-domain deterrence of cyberspace operations
- 2. Cyberspace operations as a tool of cross-domain deterrence
- What are the unique challenges for crossdomain deterrence within and from cyberspace?

Can we use traditional models of deterrence?

No: technologists

- Attribution uniquely difficult
- Covert nature of cyber and signaling
- Uncertainty about effects
- Interdependency of civilian and military
- Proliferation of actors

Yes: policy/political science

- Emphasize human behaviors
- Attribution is not unsolvable or unique to cyberspace
- Limited amount of significant actors

Deterring Cyberspace Operations: Who to Deter?

The attribution problem

- Cynics: Problem with ability to attribute, timeliness
- Optimists: Attribution is what states make of it (Rid and Buchanan 2015), analogies in other realms
 - Importance of context

Proliferation of actors

- Cynics: lowered barrier to access, decreased physical risk
- Optimists: thresholds for significant activity limit actors

Deterring Cyberspace Operations: What to Deter?

Computer network exploitation

- Vast majority of cyberspace operations
- Prolific and of varying levels of sophistication
- Can states deter CNE?
- The case for targeted deterrence of CNE

Cyber "attack"

- Low-level vs. significant
- Virtual vs. physical
- Is the importance the target or the scale?

Deterring Cyberspace Operations: Deterrence by Denial

Pros

- Augments both tailored and general deterrence
- Does not require high thresholds for attribution
- Useful for wide variety of threats and actors
- Does not require political will

Cons

– Technical capability (offense-dominance?)

Cross-Domain Deterrence by Denial:

- Defending physical components of cyberspace
- Sub patrols, space defenses, hardening of C2 facilities

Deterring Cyberspace Operations: Deterrence by Punishment

Pros

- Large inventory of punishment options
- More discernible signal, therefore potentially more credible and more effective

Cons

- Proportionality
- Escalation Concerns

Cross-Domain Deterrence by Punishment:

- Sanctions
- Kinetic strikes

Policy Application for Deterrence within Cyberspace Challenges

Technologist-based deterrence

- Strategically ambiguous
- Focused on defense and resiliency
- Invest in attribution instead of punishment

Policy/political science based deterrence

- Declaratory
- Thresholds for action
- Mix of deterrence by denial (investments in resiliency and defense) and cross-domain deterrence by punishment

Cross-Domain Deterrence from Cyberspace: Signaling and Secrecy

Cyber Skeptics:

- Perceptibility
- Saliency
- Uncertainty about effects
- Inability to tie domestic promises with cyber punishment

Cyber Optimists:

- Analogies with covert operations and deterrence
 - Credible signals to tailored audiences
- Potential for overt uses of cyber in the future

Cross-Domain Deterrence from Cyberspace: Escalation Control

Cyber Skeptics:

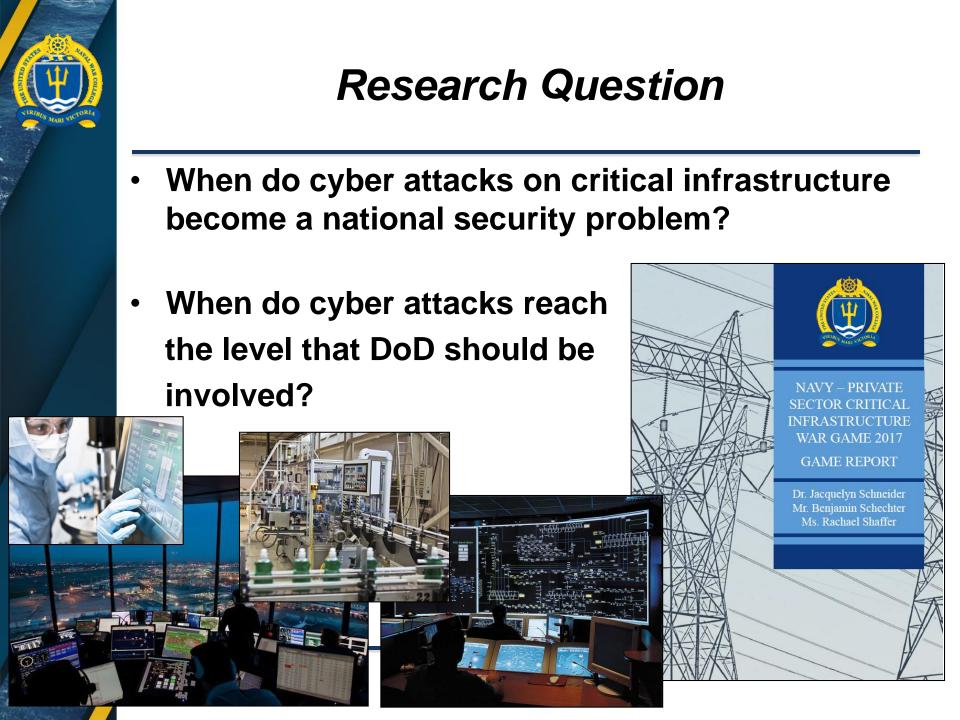
- Uncertainty about collateral damage
- Uncertainty about adversary perceptions
- Vulnerabilities in critical infrastructure and linkages to conventional power may lead to inadvertent escalation
 - Ex. Nuclear C3

Cyber Optimists:

- Flexible options to limit escalation
- Provide means to respond credibly to threats short of kinetic response

Cross-Domain Deterrence and Cyberspace: Evidence

On Escalation


- Unclassified quantitative evidence shows no signs of escalation in response to cyber operations
 - Valeriano, Jensen, and Maness (2018)
 - Kostyuk and Zhukov (2017)
- War gaming and survey experiments on American populations also show no signs of escalation
- On Signaling
- On Deterring Cyber Actions

Summary of Wargames and Cyber Activity

	Context	Blue Lead	Blue Highest Level Cyber	Blue Actions Before Cyber Attack	Red Highest Level Cyber	Actions in Response to Red Cyber
2011	Land war, Near-peer Adversary	Female, State Dept	Cyber attack against conven- tional military operations	Conventional military force and nuclear alert	Cyber attacks on conven- tional military targets	None
2012	Naval war, Near-peer Adversary	Male, Former Military	Cyber attacks against strate- gic command and control	None	No red cyber attacks	NA
2013	Naval war, Near-peer Adversary	Male, State Dept	Reversible virtual cyber attack on military capability	Conventional military force	Cyber attacks on military C2 nodes and crit- ical infrastruc- ture	None
2014	Land war, Asym- metric Adversary	Male, Policy	Cyber attack against of- fensive cyber capabilities	Conventional military force and nuclear alert	Cyber attacks on allied nu- clear facilities	None
2015	Land war, Near-peer Adversary	Female, Policy	Information Operations	Conventional military force and nuclear alert	Cyber attacks on allied eco- nomic system, conventional military tar- gets	None
2016	Land war, Near-peer Adversary	Male, Policy	Cyber attack on dual-use target that is reversible and covert	Conventional military force and economic sanctions	Cyber attacks on mainland blue power	Economic sanctions

Summary of Wargames and Cyber Activity

	$\mathbf{Context}$	${f Blue}$	Blue Highest	Blue Actions	Red Highest	${f Actions}$ in
		Lead	Level Cyber	Before Cyber	Level Cyber	Response to
				Attack		Red Cyber
2011	Land war,	Female,	Cyber attack	Conventional	Cyber attacks	None
	Near-peer	State	against conven-	military force	on conven-	
	Adversary	Dept	tional military	and nuclear	tional military	
			operations	alert	targets	
2012	Naval war,	Male,	Cyber attacks	None	No red cyber	NA
	Near-peer	Former	against strate-		attacks	
	Adversary	Military	gic command			
			and control			
2013	Naval war,	Male,	Reversible vir-	Conventional	Cyber attacks	None
	Near-peer	State	tual cyber at-	military force	on military C2	
	Adversary	Dept	tack on military		nodes and crit-	
			capability		ical infrastruc-	
			~		ture	77
2014	Land war,	Male,	Cyber attack	Conventional	Cyber attacks	None
	Asym-	Policy	against of-	military force	on allied nu-	
	metric		fensive cyber	and nuclear	clear facilities	
2015	Adversary		capabilities	alert	C 11	NT.
2015	Land war,	Female,	Information	Conventional	Cyber attacks	None
	Near-peer	Policy	Operations	military force	on allied eco-	
	\mathbf{A} dversary			and nuclear	nomic system,	
				alert	conventional	
					military tar-	
2016	Land war,	Male,	Cyber attack	Conventional	gets Cyber attacks	Economic
2010	,	Maie, Policy	Cyber attack on dual-use	military force	on mainland	sanctions
	Near-peer Adversary	roncy		and economic		Sanchons
	Adversary		target that is reversible and	sanctions	blue power	
			covert and	Salicuons		
			COAGLE			

Support Requested by Agency

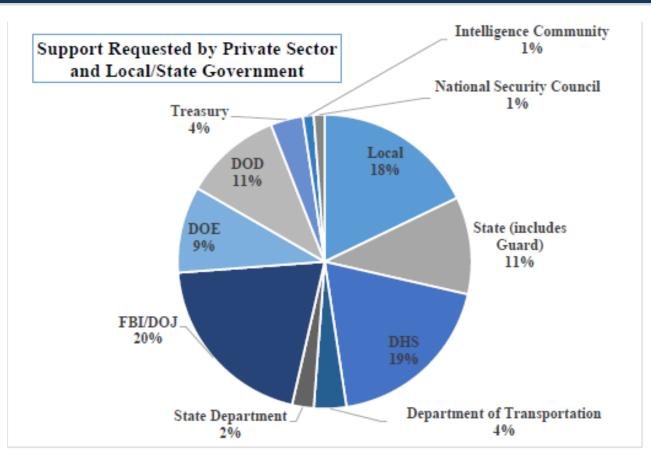
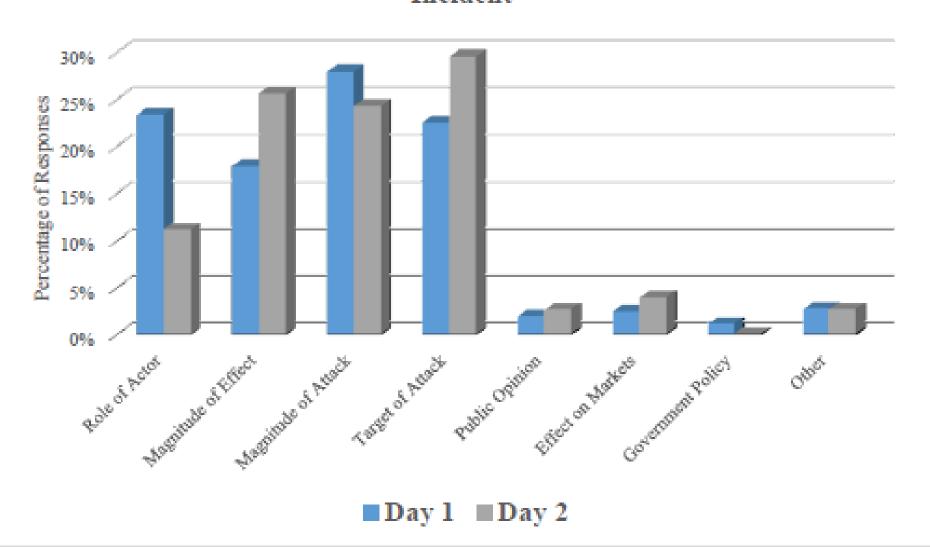



Figure 2. Break-out of Support Requested by Agency

Primary Characteristic that Made Event a National Security Incident

Cross-Domain Deterrence and Cyberspace: Evidence

On Escalation

On Signaling

- No evidence from war gaming that cyber operations are an effective signal
 - Difficulty linking action to effect (technical and cognitive problem)
 - "Cheap Talk" problem
- On Deterring Cyber Actions

Cross-Domain Deterrence and Cyberspace: Evidence

- On Escalation
- On Signaling
- On Deterring Cyber Actions
 - Deterrence by denial:
 - Defense and resiliency
 - What are the trade-offs?
 - Deterrence by punishment:
 - What's credible?

Research Sample 2: U.S. Public Opinion

- Does the instrument or the effect of attack matter more for support for retaliation?
- Survey experiment of American public
 - 9 scenarios, attack on U.S. power plant

Cyber Attack, Economic	Conventional Attack,	Nuclear Attack, Economic
Effects	Economic Effects	Effects
Cyber Attack, Loss of Life	Conventional Attack, Loss of Life	Nuclear Attack, Loss of Life
Cyber Attack, Nuclear	Conventional Attack,	Nuclear Attack, Nuclear
Fall-Out	Nuclear Fall-Out	Fall-Out

Findings: Support for Retaliatory Air Strikes

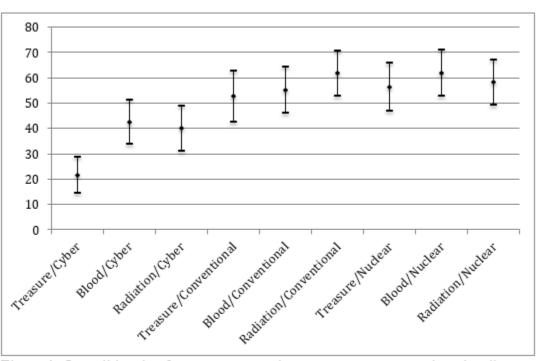
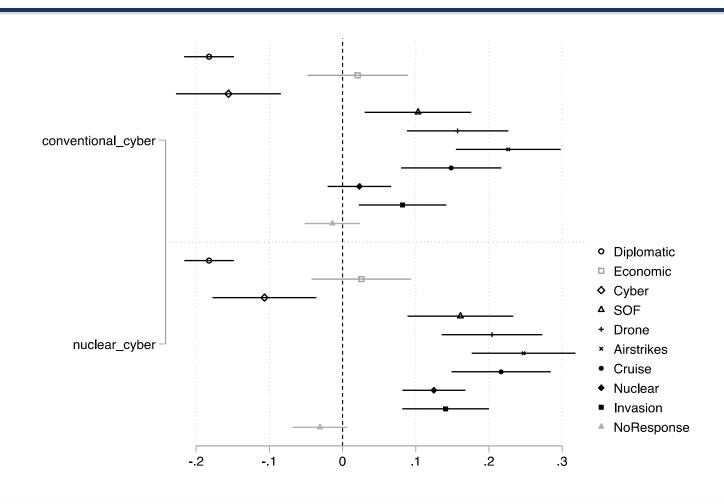



Figure 1. Overall levels of support across nine treatment groups, using airstrikes as the dependent variable (95% confidence intervals shown).

Findings: Support for Retaliatory Air Strikes

Cross-Domain Deterrence and Cyberspace: Policy Implications

- Deter less with more credible punishment
 - Focus on state actors
 - Limit deterrence to specific targets
 - Ambiguous on effects?
- Counter-cyber operations to degrade adversary cyber capabilities
- Cyberspace ops not optimal for deterring across domains

A large role for deterrence, but cyber strategy must move beyond just deterrence and instead think about what we value most and how we can actively use nation state instruments of power to retain what we value in cyberspace.

