

Machine Learning for Operational Needs

Prof. Kathleen M. Carley kathleen.carley@cs.cmu.edu

The Promise

- Boring jobs are gone
- Complex but repetitive jobs done better e.g. translation
- Gives people time to do the kinds of creative work people are good at
- Faster analysis of complex situations, save lives

The Scientific Promises

- Letting the data speak
 - Rather than prejudice the results by your theory
 - No on top assumptions
 - Removes unconscious bias
- Regularities emerge from massive data
 - Subtle but critical similarities
 - Remove bias due to an analyst spending years getting over invested
 - More data can be processed than a human can

Key Problems with Machine Learning

- Feature set extraction
- Training sets are limited
- Training set construction is hard
- Generalized Model and Contextualized Application
- Assumption of stationarity
- The bias is in the data collection
- Explanation to the public

Feature Set Extraction

- ML requires the data to be turned into a set of features
- Identifying the right features is an art
- Auto feature identification (e.g. some of the latent space models) decreases interpretability

Training

- Most algorithms are still supervised learning
- Training sets
 - Don't always exist
 - Are out of date
 - Are wrong
 - Don't cover all contexts
 - Outlier cases can be critical
- Using these tools in the wild
 - You get a decrease in accuracy
 - Black swan events occur
 (e.g. driving the freak hail storm with the kid crossing the road)

Training Set Construction is Hard

- Time to create training sets
 - Multiple people
 - Inter-rater agreement
 - Of significant size
 - Representative of problem
 - Search for other indicators
- In a volatile world the time may not exist
- Example case bots
 - Historic bots
 - Evolving
 - Random strings

Generalized Model Contextualized Application

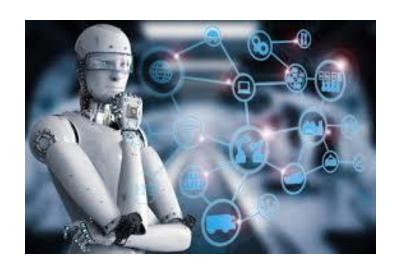
- Churchill: Hero or war criminal?
- Kevorkian: Reducing suffering or murder?
- Stealing to feed a starving family: Stealing for fun?
- ML creates a narrow with strict rules and low context
 - Criminal Justice Narrative and context do matter
 - History Perspective matters

Assumption of Stationarity

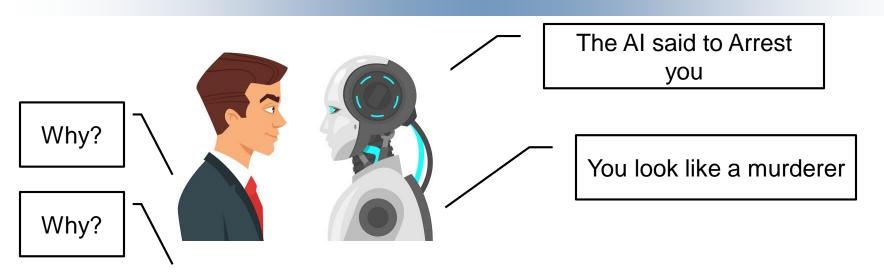
- ML assumes stationarity of process "tomorrow is like today"
- Many socio-cultural systems violate this assumption
 - Training set gets stale
 - Problem is out of bounds
 - **–** ...

The Bias is in the Data Collection

- ML are meant to avoid data processing bias
- However The bias is often in how the data was collected
- E.g. the insider threat issue



Explanation to the Public



- A machine learning tool is a model
- Models for policy need to be explained to the public
- Many classes of models can't be used to provide explanations

So When is it Bad that the Model is Wrong?

- When false positives matter
 - Judging an actor as being a criminal
- When false negatives matter
 - Missing early stage cancer

The Promise

