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Abstract

Motivated by the asymmetric information inherent to cyberwarfare, we examine a game of deterrence
between an attacker and a defender in which the defender can signal its retaliatory capability but can
only imperfectly attribute an attack. We show that there are equilibria in which the defender sends noisy
signals to increase its expected payoff. In some equilibria, the defender can use signaling to deter an
attacker and increase its payoff. In a different and somewhat counter-intuitive equilibrium, the defender
can increase its expected payoff through signaling by inducing the attacker to attack more.

Defensive cyber security best practices have proved to be insufficient for protecting both public and
private assets. Cyber aggression against Sony Pictures, the U.S. Office of Personnel Management, the
Central Bank of Bangladesh, the Germain Parliament, and ransom-ware attacks WannaCry and NotPetya
represent only a small sample of cyber attacks that led to substantial political and economic disruptions
and costs. More generally, the threat of cyber attacks against key institutions and critical infrastructure
has outpaced defensive efforts to reduce vulnerabilities [8]. As a result, the focus of international cyber
defense has shifted toward deterrence. For example, the 2019 National Defense Authorization Act (NDAA)
specifically calls for such a U.S. cyber deterrence policy:

”It shall be the policy of the United States, with respect to matters pertaining to cyberspace,
cybersecurity and cyber warfare, that the United States should employ all instruments of national
power, including the use of offensive cyber capabilities, to deter if possible, and respond to when
necessary, all cyber attacks or other malicious cyber activities [1].

However, traditional deterrence [25, 20] relies on numerous assumptions that in new domains of attack —
especially computer networks—are no longer valid. Consider the following two assumptions that are central
to classic deterrence theory:

• “General deterrent threats are likely to be more effective when a potential challenger views them as
capable [15].” or in other words deterrence requires “the possibility of a clear demonstration of the
defender’s capabilities [18].”

• “The deterring state must first know who to counterattack [11].”

When considering cyberwarfare, neither of these assumptions are likely to hold. First, it is unlikely
that potential attackers know their target’s retaliatory capability. The reason is that “cyber weapons rely
largely on previously unknown, so called zero-day, vulnerabilities” and thus demonstrating a capability to
a potential attacker renders the capability ineffective [29, 5]. Second, properly attributing a cyber attack is
a recognized difficult problem due to both the technical acumen required to conduct forensic analysis and
the ease in which an attacker can deliberately obscure its identity [26]. These complexities are not limited
to digital interactions; imperfect attribution and signaling are also gaining relevance in domains such as
traditional warfare and international relations [24, 21, 17] as key elements of deterrence.

Nevertheless, the new tenants of deterrence have not quelled the threat of aggression and retaliation. In
addition to the 2019 NDAA where the United States promises to “respond when necessary” major world
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superpowers have made similar retaliatory threats. For example in the 2019 French cyber strategy from
the Ministre Des Armées states “We will also be ready to use the cyber weapon in external operations
for offensive purposes, alone or in support of our conventional means [19].” Chinese military strategy
documents have made similar threats: “A high-level Chinese military organization has for the first time
formally acknowledged that the country’s military and its intelligence community have specialized units for
waging war on computer networks [12].” All told, despite the unverifiable nature of these cyber threats,
world powers are still publicizing their intentions to use cber weapons when necessary.

These new features of modern deterrence scenarios demand a formal and rigorous treatment. Such an
exercise would provide a needed foundation for the growing literature focused on the feasibility of deterrence
in cyber space [16, 14, 13] and establish a standard for expanding traditional deterrence theory. To address
this need, we develop a model of an attacker and defender with three main features designed to bridge the
gap between traditional and modern deterrence theory:

1. The defender can only imperfectly attribute attacks.

2. The attacker has uncertainty over the defender’s retaliatory and defensive capability.

3. The defender can signal its capability not by revealing its true capability but through costless and
unverifiable cheap talk.

Our focus is on the relevance and importance of item 3). Specifically, since verifiable signaling is unlikely in
many domains, including cyber, we examine whether signaling via cheap talk can be effective in deterring
adversaries.

The results of our formal analysis illuminates at least four key insights regarding signaling. First, there
is no separating equilibrium in which the defender always noiselessly signals its true retaliatory capability.
The reason is that if a defender could convince an adversary that it is indeed signaling its true capability,
then the defender would have an incentive to always signal a strong retaliatory capability. Second, there
are several babbling equilibria in which the defender’s signal provides no information regarding its true
capability. While not intrinsically interesting, these babbling equilibria provide a baseline of comparison for
any potential signaling equilibria. Third, there exists semi-separating equilibria in which the defender a)
releases noisy signals regarding its true retaliatory capability and b) increases deterrence through a reduction
in the attack probability relative to a babbling equilibrium and c) increases its expected utility relative to a
babbling equilibrium. Or simply put, signaling can be used to increase deterrence.

The fourth and arguably most surprising result is that in some parameter regimes, there exists a semi-
separating equilibrium in which the defender increases its expected utility over a babbling equilibrium by
inducing the attacker to increase the probability of attack. The reasons for this counter-intuitive result are
two-fold. First, an increase in the attack probability reduces the frequency in which the defender is punished
for an incorrect retaliation. Secondly, the defender can use its signal to induce the attacker to attack when
the defender has a higher defensive and retaliatory capability. This result, which we call “anti-deterrence,”
adds a new consideration to the conversation around cyber deterrence. In contrast to the current discussion
that mainly asks “is cyber deterrence possible?” the results of our model suggest that an equally important
question is “should cyber deterrence be the goal?”

In addition to work explicitly focused on deterrence theory, our work is related to and partially synthesizes
the vast literature on entry deterrence in industrial organization, criminal deterrence and attacker-defender
games in the broader context of signaling games. However, our work is undoubtedly most related to [4].
Their model — also motivated by cyber warfare — has a single defender and n possible attackers. The
attackers choose whether to attack and the defender receives a noisy signal and chooses whether to retaliate
against one or more attackers. The main finding is endogenous complementarity among attackers where
increasing aggression from the most aggressive attacker incentivizes increasing aggression from all others.
Furthermore, jointly enhancing attack detection and attacker identification (which they jointly refer to as
attribution) strengthens deterrence but enhancing only one of either attack detection or identification may
weaken deterrence. Our model builds directly from theirs except that we limit our model to one attacker in
order to better focus on the impact of signaling 1.

1Interestingly, [4] note that an interesting direction of future work would be to ask “Would the ability to signal cyber-
capability lead to coordination on a peaceful equilibrium?” While we developed our model before being made aware of [4], the
fact that researchers are independently converging on similar topics points to the timeliness of the topic.
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Our work is also related to attacker/defender games, especially those that occur in the cyber domain.
These games include element of imperfect attribution and blame [9], multiple attackers [30], and signaling
[31]. While the full literature of attacker/defender games is vast and extends back to Blotto games [6],
there are several large surveys on attacker and defender games and their applications to computer network
security [27, 22, 32]. We emphasize however that our model extends beyond just cyber security and we
largely abstract from technical details that are particular to cyber attacks.

Outside of warfare and defense, deterrence and signaling is a prominent topic in the industrial organization
literature, specifically in regard to market entry. Classic work in this field is concerned with undertaking
costly investments to deter a potential market entrant and maintain monopoly status [7, 23, 10]. These
models have evolved to include various forms of signaling [28, 3]. Finally, the concept of deterrence and
punishment is prevalent in the economics of crime literature [2].

1 Model Outline

We consider a two-player sequential-move game of imperfect information between an attacker and a defender.
At the start of the game, nature assigns the defender either a “high” or “low” type, signifying its retaliatory
capabilities. In the model, the defender knows its capability with certainty while the attacker does not.
Instead, the attacker only knows the probability with which nature assigns the defender’s retaliation capa-
bility. If our game is interpreted as one instance of an infinitely repeated game, the defender’s capability
fluctuating between high and low can come about due to the dynamics of bugs and exploits being discovered
and patches subsequently released.

After the defender realizes its capability, it chooses how to signal its capability to the attacker. The
defender can either signal that it has a high capability or a low capability. We do not place any restrictions
on these signals and there is no cost to signaling. That is, regardless of what the defender’s true capability
is, it can costlessly signal any capability.

Next, the attacker perfectly observes the defender’s signal and then chooses whether or not to attack.
The attacker’s decision to attack is binary and it can only condition its decision on the signal it received
from the defender and not the defender’s true capability.

Following the attacker’s decision to attack, the defender receives a signal that is correlated but not
perfectly correlated with the attacker’s action. As a realistic example, it is possible that an attacker initiates
an attack but the defender’s threat detection software never notices the attack and thus the defender receives
a signal that it is not under attack. This represents an undetected attack. On the other hand, it is possible for
the attacker to choose not to attack but the defender receives a signal that it is under attack. This represents
a false alarm or possibly an attack by an exogenous and unmodeled attacker. This signal generating process
captures the imperfect attribution aspect of the model. That is to say, even when the attacker chooses to
attack, the defender does not know with certainty whether it was actually attacked. We note that this signal
generating procedure is the same as in the one attacker case of [4].

After observing the signal, the defender moves next by choosing whether to retaliate against the attacker.
There is no restriction on the defender’s actions conditional on the signal. So for example, a real-world
defender can choose to retaliate even when it didn’t receive a signal that it was attacked. This might happen
if a defender knows that its detection capabilities are poor and it is likely that an attacker chose to attack
and subverted detection methods. Similarly, a defender can forego retaliation even if it receives a signal that
its systems are under attack.

The payoffs depend on the defender’s capability, the attacker’s decision to attack and the defender’s
decision to retaliate. The attacker incurs a reward for attacking but also incurs a cost if the defender
retaliates. If the attacker does not attack but the defender retaliates anyway, the attacker still incurs a cost.
The attacker incurs a higher cost of retaliation from a defender that has a high capability. The defender
incurs a cost when it is attacked but receives a small benefit (less than the cost of being attacked) for
correctly retaliating. The defender incurs a cost if it incorrectly retaliates against the attacker. That is, if
the attacker chooses not to attack but the defender retaliates, the defender incurs a cost. If the attacker
does not attack and the defender does not retaliate, neither player incurs rewards or costs.

There are several justifications as to why a defender would receive a benefit from retaliating. One reason,
as noted in [4] is that a retaliation can be reinterpreted as stopping an ongoing attack. Another source of
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benefit is that there may be political pressure to retaliate after an attack. Yet another motivation for the
defender receiving a benefit by retaliating is to establish a long-run reputation as a player that is willing to
retaliate, which may deter other potential attackers in the future.

A key assumption in our model is that a defender with high capability both delivers a stronger strike to
the attacker and also receives a higher benefit for a correct retaliation than a defender of low capability. This
assumption is justified in several ways. First, once again, if a retaliation is thought of as stopping an ongoing
attack, then a defender that delivers a strong strike to the adversary does more damage to the adversary’s
systems and thus is more effective at stopping the ongoing attack. However, an additional interpretation
is that the damage to the adversary and the benefit to the defender is independent of the defender’s type
but the probability of a successful retaliation is higher for a defender of high capability. Therefore, the
parameters describing the defender’s benefit from a correct retaliation and the harm inflicted on the attacker
can be interpreted as the expected benefit and harm.

2 Model Specification

The game has two players, a and d, and a nature player to capture stochastic elements. In the first stage of
the game, nature chooses the type of the defender. The defender is of type H—representing high capability—
with probability γ and is type L with probability (1− γ).

After the defender is assigned its type, it signals either sH or sL. Specifically, the defender’s pure strategy
at this stage is a mapping from {H,L} to {sH , sL}. Therefore, the defender’s mixed strategy is a mapping
F : {H,L} → [0, 1]. That is, the defender chooses the probability for which it signals a high capability for
each of its possible types. This function can be represented by two real numbers αH and αL. Specifically,
αH is the probability that the defender signals sH— a high capability signal—given it was assigned a high
capability and αL is the probability the defender signals sH given that nature assigned it a low capability.
Analogously, (1−αH) and (1−αL) is the probability that the defender signals sL—a low capability signal—
given that nature assigned it a high and low capability, respectively.

After the defender’s signal, the attacker observes the signal and chooses whether or not to attack. The
attacker’s pure strategy is then a mapping from {sH , sL} to {A,DA}. and thus the attacker’s mixed strategy
is a mapping G : {sH , sL} → [0, 1]. Intuitively, the attacker’s mixed strategy assigns the probability of attack,
A, conditional on the signal that it received. This strategy can be represented by two real numbers βH and
βL where βH is the probability the attacker chooses A given that it received the signal sH and βL is the
probability that attacker chooses A given it received the signal sL. Of course, (1− βH) and (1− βL) is the
probability the attacker doesn’t attack (chooses action DA), given it received signal sH and sL, respectively.

After the attacker’s action is drawn according to the attacker’s mixed strategy, the defender’s observation
is drawn by nature. Specifically, the defender either observes o1 or o2 but the probability of each signal
depends on the attacker’s action. Specifically, if the attacker chooses to attack, the defender observes o1
with probability π1 and o2 with probability (1− π1). If the the attacker does not attack, then the defender
observes o1 with probability π2 and and o2 with probability (1 − π2). Intuitively, π1 and π2 represent the
defender’s ability to attribute an attack. For example, if π1 = π2, then the signal does not depend on the
attacker’s action and the defender does not learn anything from the signal. If π1 = 1 and π2 = 0, then the
defender can perfectly attribute attacks. Without loss of generality, we assume that π1 ≥ π2.

Finally, the defender must choose whether to retaliate given it’s observation. The defender’s pure strategy
maps its capability, observation and the signal it sent to an action {R,DR} (R for retaliate and DR for
don’t retaliate). That means that the defender’s mixed strategy is a function F : {o1, o2} × {sH , sL} ×
{H,L} → [0, 1]. This strategy represents the probability that the defender retaliates—chooses action R—
given its signal, observation and type. Let ρ(x, y, z) be the probability the defender retaliates after observing
observation x, signaling y and having type H. For example ρ(o1, sH , H) is the probability that a defender
of high capability that signaled sH and observed o1 chooses to retaliate. Let ρ (without subscripts) be
shorthand for the set of ρ(x, y, x) in the defender’s strategy that give the retaliation probabilities.

The payoffs depend on the attacker’s action, the defender’s capability and the defender’s choice to retal-
iate. If the attacker attacks, it accrues payoff of 1. However, if the defender retaliates, the attacker incurs a
cost of cH if the defender has high capability and cL if the defender has low capability. If the attacker does
not attack but the defender retaliates, we assume the attacker incurs a cost of v, regardless of the defender’s
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type. Since a defender of high capability is more able to punish, we assume cH > cL. We also assume that
cH > 1+v. This assumption implies that when the defender has high capability, the attacker would prefer to
not attack and not be retaliated against over attacking and incurring a retaliation. Secondly, we assume that
cL > v. This means that the cost to being correctly retaliated against is always worse than being incorrectly
retaliated against. For technical convenience, we assume that 1−π1c−π2v 6= 0 and 1−π1c−π2v 6= 0. This
is an innocuous assumption that allows us to ignore sets of parameters that have measure 0.2

For the defender, if it is attacked it incurs a cost of −1. If it correctly retaliates, it earns rH if it is high
capability and rL if it is low capability. We assume rH > rL. We also assume that rH , rL < 1 which means
that the defender would rather not be attacked than be attacked and correctly retaliate. If the defender
retaliates when the attacker didn’t actually attack, it incurs a cost of w. If there is no attack and no
retaliation, both players earn 0. The extensive form version of the game is given in figure 1 which illustrates
the sequence of events, the information sets and the payoffs.
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Figure 1: Extensive form representation of the signaling game. “Circle” nodes are attacker nodes and
“square” nodes are defender nodes. Nodes of the same color are in the same information set. Probabilities
for the nature player are given in Greek letters and actions for the attacker and defender are given in Latin
letters.

The solution concept we will use to analyze this game is the Perfect Bayesian Equilibrium (henceforth
equilibrium). Under such a solution concept, player’s strategies are optimal given their beliefs and beliefs
are derived using Bayes rule wherever possible. We do not need any further equilibrium refinement because
our main result holds for all possible actions off of the equilibrium path.

2A more technical justification for this assumption is to assume that at least one of the parameters are drawn from a
continuous probability distribution at the start of the game and all players observe the parameter value. Then the probability
that 1− π1c− π2v = 0 is exactly zero and such a case can be ignored without changing the fundamental nature of the game.
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3 Results and Analysis

To more cleanly present the results, we first analyze an attribution game and then analyze the associated
signaling game. The attribution game is the same as the game described above except the defender’s
capability is fixed and common knowledge to the attacker and the defender (this would happen if, for
example, γ = 1 or γ = 0). This renders signaling unnecessary since the attacker knows the defender’s
capability with certainty. Therefore, in the attribution game the sequence of events are: 1) the attacker
chooses whether or not to attack, 2) the defender receives a signal that is correlated with the attack and
then 3) the defender chooses whether or not to retaliate. After establishing intuition in the attribution game,
we return to the full signaling game in which the defender’s capability is not common knowledge and the
defender can signal.

3.1 The Attribution Game

Since in the attribution game we assume that the defender’s capability is common knowledge in the attribu-
tion game, we drop subscripts and let r be the reward the defender receives from correctly retaliating and
c be the cost to the attacker from being retaliated against after attacking. In the proofs, we assume that
1 − c < −v in the attribution game. Otherwise, there is a trivial equilibrium where the attacker always
attacks and the defender always retaliates. However, when considering the full signaling game later, a key
equilibrium arises when 1− cH < −v but 1− cL > −v, which is obscured in the attribution game. All formal
proofs are given in the appendix.

Proposition 1 (Equilibrium in the Attribution Game). Suppose 1 − c < −v. Let β be the probability the
attacker attacks in the attribution game. Then:

1. If 1− π1c+ π2v < 0, there exists an equilibrium of the attribution game where the attacker randomizes
with probability β∗

1 = π2w
π1r+π2w

and the defender never retaliates after observing o2 and randomizes

between retaliating and not retaliating after o1 with probability ρ∗1 = 1
π1c−π2v

.

2. If 1 − π1c + π2v > 0, there exists an equilibrium of the attribution game where the attacker random-

izes with probability β∗
2 = (1−π2)w

(1−π1)r+(1−π2)w
and the defender always retaliates after observing o1 and

randomizes between retaliating and not retaliating after o2 with probability ρ∗2 = 1−π1c+π2v
(1−π1)c−(1−π2)v

.

Corollary 1 (Uniqueness of Equilibrium in Attribution Game). The equilibria in proposition 1 are unique

Proposition 1 and corollary 1 establish that there is a unique equilibrium in the attribution game but the
nature of the equilibrium depends on the value of the parameters. To better understand the equilibrium,
first consider why it is impossible for there to be an equilibrium in pure strategies. If the attacker always
attacks, then the defender has a best response to retaliate, regardless of its signal. However, if the defender
always retaliates, the attacker is better off not attacking. Similarly, from the perspective of the defender, if
it chooses the pure strategy of never retaliating, the attacker’s best response is to always attack, in which
case the defender would have a profitable deviation to always retaliate. Therefore, there cannot be a pure
strategy equilibrium.

A necessary condition for a mixed strategy equilibrium is that both the defender and the attacker are
indifferent among at least two of their strategies. The defender only has to consider three out of its four
pure strategies:

1. Always retaliate

2. Never retaliate

3. Retaliate after o1 and don’t retaliate after o2.

The strategy “Retaliate after o2 and don’t retaliate after o1” is dominated because for any fixed value of attack
probability, β , Bayesian beliefs necessitate that an attack was more likely if the defender observes o1 then
if it observed o2. Therefore, retaliating after o2—when the defender is less certain there was an attack—and
not retaliating after o1—when the defender is more certain there was an attack—is a dominated strategy.
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Figure 2 illustrates the defender’s expected payoff Ud for each of its three strategies as a function of
the attack probability, β. The purple line extending from the origin is the defender’s expected utility from
never retaliating. The blue line with an intercept at −π2w is the defender’s expected utility from retaliating
after observing o1 and not retaliating after o2. The red line is the defender’s expected utility from always
retaliating. Finally, the gray shaded line outlines the defender’s best response for each value of β. Specifically,

for β < π2w
π1r+π2w

, the defender’s best response is to never retaliate. For π2w
π1r+π2w

< β < (1−π2)w
(1−π1)r+(1−π2)w

,

the defender’s best response is to retaliate only after observing o1. Finally, for β > (1−π2)w
(1−π1)r+(1−π2)w

, the

defender’s best response is the always retaliate. The legend in the figure lists the equations of each of the
lines.

π2w
π1r+π2w

(1−π2)w
(1−π1)r+(1−π2)w

−π2w

−w

β

Ud

Never Retaliate: Ud = −β
Retaliate after o1 only: Ud = −π2w + β(π1r + π2w − 1)

Always Retaliate: Ud = −w + β(r + w − 1)

Figure 2: Defender’s expected utility for each of its strategies
.

7



Working Paper 3 RESULTS AND ANALYSIS

π2w
π1r+π2w

(1−π2)w
(1−π1)r+(1−π2)w

−π2w

−w

β

Ud

Never Retaliate: Ud = −β
Retaliate after o1 only: Ud = −π2w + β(π1r + π2w − 1)

Always Retaliate: Ud = −w + β(r + w − 1)

(a) π1r + π2w > 1

π2w
π1r+π2w

(1−π2)w
(1−π1)r+(1−π2)w

−π2w

−w

β

Ud

Never Retaliate: Ud = −β
Retaliate after o1 only: Ud = −π2w + β(π1r + π2w − 1)

Always Retaliate: Ud = −w + β(r + w − 1)

(b) r + w < 1

Figure 3: Two different versions of figure 2 with different slopes for defender strategies.

The slope of the blue line and the red line in figure 2 are determined by π1r + π2w − 1 and r + w − 1,
respectively. By assumption, these are never 0. However, there is no restriction on their sign (except that
π1r+π2w−1 < r+w−1). Therefore, the defender’s best response curve may appear qualitatively different,
as shown in figure 3.

Independent of the slope of the curves, there are two points where the defender is indifferent between two

of its strategies. These occur at β∗
1 = π2w

π1r+π2w
and β∗

2 = (1−π2)w
(1−π1)r+(1−π2w) . Since the defender cannot have a

pure strategy in equilibrium, it must be willing to randomize between at least two strategies. Therefore, the
equilibrium attacker randomization probability must be at either one of these two values of β.

From the attacker’s perspective, it is willing to randomize if it is indifferent between attacking and not
attacking. That means the defender must randomize either after observing o1 or after observing o2 to
make the attacker indifferent. Suppose the defender randomizes after o1 and never retaliates after o2. The
randomization probability that would make the attacker indifferent between attacking and not attacking is

1
π1c−π2v

. Of course, this is only a proper probability if π1c − π2v > 1. This means that if the cost of an
attacker getting caught is too low (low value of c) or if its penalty of being incorrectly retaliated against is
too high (high value of v), the defender cannot retaliate with a high enough probability after o1 to make
the attacker indifferent between attacking and not attacking. In other words, if the cost of being correctly
retaliated against is sufficiently close to the cost of being incorrectly retaliated against, the attacker should
always just attack since the cost it incurs due to a retaliation does not significantly depend on whether or
not it attacked.

The attacker’s willingness to attack can also be phrased in terms of the defender’s attribution probabilities.
If the defender’s attribution ability are low (π1 is only slightly greater than π2), then the attacker knows
that its attack is not correlated with the defender’s signal and thus attacking has little effect on whether
or not the defender will retaliate. If this is the case, it is always in the attacker’s best interest to attack.
Conversely, if the defender’s attribution ability is high (π1 significantly greater than π2) the attacker knows
that if it attacks, it is likely to generate a signal leading to detection and therefore the defender is capable
of randomizing to make the attacker indifferent between attacking and not attacking.

Now consider the case when the defender always retaliates after o1 and randomizes its retaliation after

8



Working Paper 3 RESULTS AND ANALYSIS

o2. The attacker can only be made indifferent between attacking and not attacking if π1c − π2v < 1. In
this case, if c is relatively high and v is relatively low and the defender will always retaliate after o1, the
attacker will incur a high cost when it does attack and is retaliated against. Since the defender’s strategy
says to always retaliate after o1, the defender cannot randomize with a low enough probability after o2 to
ever induce the attacker to attack because the potential cost to attacking is so high.

Again, the analysis can be phrased in terms of the defender’s attribution parameters. If the defender has
high attribution ability (π1 much greater than π2) then the attacker knows that if it attacks, it is likely that
the defender retaliates. This is because the defender retaliates after observing o1 and when π1 is high, the
defender is more likely to observe o1. Therefore, the defender cannot retaliate with a low enough probability
after observing o2 to compensate for the loss the attacker incurs when it attacks and is retaliated against
because the attack generated signal o1.

1− π1c+ π2v ≤ 0 1− π1c+ π2v ≥ 0
Ud −β∗

1 β∗
2(r − 1)− (1− β∗

2)w
Ua −π2ρ∗1v −(π2 + (1− π2)ρ∗2)v

Table 1: Equilibrium expected utilities in the attribution game

Since β∗
1 < β∗

2 , the attacker attacks with a lower probability when π1c − π2v > 1, which occurs when
either the defender has the ability to attribute with a high degree of certainty or the punishment for correctly
retaliating is significantly higher than the punishment for incorrect retaliation. However, this does not mean
that the defender is better off in the equilibrium where the attacker attacks less. Table 1 shows the defender’s
expected utility under each equilibrium. If π1rH + π2w > 1, then the defender’s expected utility is higher
when the attacker attacks more. We will return to this point later when we discuss the question “should
deterrence be right goal?”

3.2 The Signaling Game

We now turn our attention to the signaling game. Specifically, we examine whether there are equilibria
in which the defender attempts to signal its true capability to the attacker. An important parametric
assumption is whether 1 − cL > −v (by assumption 1 − cH > −v always holds). If 1 − cL > −v, then the
attacker has a dominant strategy to attack if it knew with certainty that the defender is type L. This is
because the attacker’s payoff for attacking and getting punished (1− cL) is greater than its payoff from not
attacking and getting punished (−v). Therefore, if the attacker knew the defender were type L and would
always retaliate, its best response would be to always attack.

3.2.1 Separating Equilibria

First we establish that there is no separating equilibrium in which the defender’s signal truthfully reveals its
type, regardless of the sign of 1− cL + v:

Proposition 2 (No Separating Equilibrium). Assume 1 − cL < −v. Then, there is no equilibrium where
the defender truthfully signals its type in the signaling game. Formally, there is no PBE where α1 = 1 and
α2 = 0.

Proposition 3 (No Separating Equilibrium II). Assume 1− cL > −v. Then, there is no equilibrium where
the defender truthfully signals its type in the signaling game. Formally, there is no PBE where α1 = 1 and
α2 = 0.

Although the formal proofs of propositions 2 and 3 proceed differently, the logic is similar. If the
defender truthfully signals its type to the attacker, then after the signal, the attacker and defender just play
the attribution game analyzed in the previous section. However, the defender of type L or type H would
be better off if it could deceive the attacker in playing a different attribution game. In other words, in some
cases a defender of type H would be better off if it could convince the attacker it is type L and have the
attacker choose its strategy as if the defender is type L. In other cases, the defender of type L would be
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π2w
π1rH+π2w

π2w
π1rL+π2w

(1−π2)w
(1−π1)rH+(1−π2)w

(1−π2)w
(1−π1)rL+(1−π2)w

−π2w

−w

β

Ud

Never Retaliate: Ud = −β
Retaliate after o1 only: Ud = −π2w + β(π1r + π2w − 1)

Always Retaliate: Ud = −w + β(r + w − 1)

Figure 4: Defender’s best responses in the signaling game. The solid purple line extending from the origin
is the defender’s payoffs from never retaliating. The solid lines represent the defender’s payoff when it is
type H and the dashed lines represent its payoffs when it is type L. The four labeled values of β denote the
points where the defender is indifferent between two of its strategies

better off if it could convince the attacker that it was type H and have the attacker play the attribution
game as if the defender were type H.

Figure 4 illustrates the payoff for the defender of type L and type H in the signaling game and illustrates
why there can’t be a separating equilibrium. If the defender did truthfully signal its type, then after
the signal, the attacker and defender play the attribution game described above. Since there is a unique
equilibrium in the attribution game, the attacker’s randomization probabilities after receiving signal sH are

either π2w
π1rH+π2w

or (1−π2w)w
(1−π1)rH+(1−π2)w

and after receiving signal sL, randomizes with probability π2w
π1rL+π2w

or
(1−π2w)w

(1−π1)rL+(1−π2)w
. All four of these randomization probabilities are annotated in figure 4.

For any two of the equilibrium probabilities annotated in the figure, it is clear that either a defender
of type H or a defender of type L would have an incentive to switch its signal. For example, suppose the
parameters were such that in the attribution game, when the defender is type H the attacker randomizes with
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β (L, o1) (L, o2) (H, o1) (H, o2)
1 π2w

π1rH+π2w
DR DR P1 DR

2 (1−π2)w
(1−π1)rL+(1−π2)w

R P2 R R

3 π2w
π1rL+π2w

P3 DR R DR

4 π2w
π1rL+π2w

P4 DR R R

5 (1−π2)w
(1−π1)rH+(1−π2)w

DR DR R P5

6 (1−π2)w
(1−π1)rH+(1−π2)w

R DR R p6

Table 2: Possible Pooling Equilibria. Column’s 2-5 give the defender’s actions give its type and observation.
For example column (L, o1) gives the defender’s action when the defender is type L and observes o1. The
defender’s action can be either pure—R or DR— or mixed. When the defender’s action is mixed, the proba-

bility is the probability that the defender retaliates. P1 = 1
γ(π1cH−π2v)

P2 = 1−(1−γ)(cLπ1−π2v)−γ(cH−v)
(1−γ)(cL(1−π1)−v(1−π2))

, P3 =
1−γ(π1cH−π2v)
(1−γ)(π1cL−π2v)

,

P4 = 1−γ(cH−v)
(1−γ)(π1cL−π2v)

, P5 = 1−γ(π1cH−π2v)
γ(cH(1−π1)−v(1−π2))

, P6 = 1−γ(cH−cL)π1−cLπ1+π2v
γ(cH(1−π1)−v(1−π2))

probability βH = π2w
π1rH+π2w

and when the defender is type L randomizes with probability βL = π2w
π1rL+π2w

.
These points are where the solid blue line and the dashed blue line intersect the purple line extending from
the origin, respectively. In this case, the defender of type L would have an incentive to signal sH because its
expected utility along its best response curve is higher at βH . Of course, there are other possible equilibrium
randomization probabilities in the attribution game and other versions of the graph (versions with the blue
lines sloping upward) but in all cases, either a defender of type H or a defender of type L would have an
incentive to not truthfully signal.

3.2.2 Pooling Equilibria

Before analyzing semi-separating equilibria, we present the possible pooling equilibria. In a pooling equilib-
rium, the defender’s signal conveys no information regarding its true type and thus the attacker ignores the
signal and only chooses one value of β for which to randomize its attack.

There exists a pure strategy equilibrium if γ(1 − cH) + (1 − γ)(1 − cL) > −v. In such an equilibrium,
the attacker always attacks and the defender always retaliates. This is because the (net) cost to the attacker
of being correctly retaliated against when the defender is type L is relatively small compared to its cost of
being incorrectly retaliated against. Therefore, if the defender is significantly likely to be of type L (low
value of γ), then an equilibrium attacker strategy is to always attack because the frequency in which the
defender is type H and retaliates is not enough to deter the attacker from attacking when the defender is
type L and has a relatively weak ability to punish.

If γ(1− cH) + (1− γ)(1− cL) < −v, there is no pure strategy equilibrium in which the attacker always
attacks or never attacks. This implies that the defender must also play a mixed strategy in order to make
the attacker indifferent between attacking and not attacking3. For the defender to be willing to randomize at
one of its information sets, it must be indifferent between two actions at that information set. This implies
that a pooling equilibrium must have the attacker randomize with one of the four probabilities given in figure
4. Table 2 gives the possible pooling equilibria.

Not all of the equilibria in table 2 are possible simultaneously. First, the parameters must be such that
the defender’s randomization probabilities are between 0 and 1. In addition, the equilibria in lines 3 and 4
cannot exist simultaneously and lines 5 and 6 cannot exist simultaneously. To see why the equilibria in lines
5 and 6 cannot exist simultaneously, consider figure 3. Again, the gray highlighted line traces the defender’s

best response for each of its types. If the attacker randomizes with probability β = (1−π2)w
(1−π1)rH+(1−π2)w

, then a

defender of type H is indifferent between always retaliating and retaliating after o1 only. However, a defender
of type L may have a best response of either retaliating after o1 and not retaliating after o2, as shown in
figure 5 or to never retaliate, as shown in figure 6. With the exception of a measure zero set of parameters,

3Again, there is a measure zero set of parameters where the defender would not have to randomize to make the attacker
indifferent but we ignore such a case for the reasons given above.
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the defender defender cannot be indifferent between never retaliating and retaliating after o1 only when the

attacker randomizes with probability β = (1−π2)w
(1−π1)rH+(1−π2)w

, and thus only one of the two equilibria can exist

for a given value of the parameters. The same type of argument can be used to show that only one of the
equilibria in rows 5 and 6 can exist simultaneously4.

π2w
π1rH+π2w

π2w
π1rL+π2w

(1−π2)w
(1−π1)rH+(1−π2)w

(1−π2)w
(1−π1)rL+(1−π2)w

−π2w

−w

β

Ud

Never Retaliate: Ud = −β
Retaliate after o1 only: Ud = −π2w + β(π1r + π2w − 1)

Always Retaliate: Ud = −w + β(r + w − 1)

Figure 5: Defender’s of type L’s best response at β = (1−π2)w
(1−π1)rH+(1−π2)w

is to retaliate after o1 and not

retaliate after o2

Since there always exists a babbling equilibrium in cheap talk games, at least one equilibrium in table
2 exists. 5 On the other hand, for some values of the parameters, there are multiple babbling equilibria.
For example, when π1 = .9, π2 = .1, cH = 4, cL = 2, v = 2 and γ = .4, the randomization probabilities in

4Formally, when rH > π1
π2

1−π2
1−π1

, row 4 and row 5 are possible equilibria. Otherwise, row 3 and 6 are possible equilibria. The

measure zero parameter set we ignore occurs when rH = π1
π2

1−π2
1−π1

5See Farrell, Joseph, and Matthew Rabin. “Cheap talk.” Journal of Economic perspectives 10.3 (1996): 103-118.
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π2w
π1rH+π2w

π2w
π1rL+π2w

(1−π2)w
(1−π1)rH+(1−π2)w

(1−π2)w
(1−π1)rL+(1−π2)w

−π2w

−w

β

Ud

Never Retaliate: Ud = −β
Retaliate after o1 only: Ud = −π2w + β(π1r + π2w − 1)

Always Retaliate: Ud = −w + β(r + w − 1)

Figure 6: Defender’s of type L best response at β = (1−π2)w
(1−π1)rH+(1−π2)w

is to never retaliate.

row 1,2,4 and 5 are all proper probabilities and thus there are multiple equilibria. Additionally, at those
parameter values, the equilibrium in which the attacker always attacks and the defender always retaliates
also exists. We will continue the analysis of pooling equilibria when we discuss each equilibrium relative to
the semi-separating equilibrium derived in the following section.

3.2.3 Semi-Separating Equilibria

Thus far, we have established that there are never separating equilibria, and depending on the parameter
regime, many possible pooling equilibria and one possible pure strategy equilibrium. In this section, we
establish the conditions in which there are equilibria where the defender’s signal contains some — but not
perfect— information regarding its true type.

Proposition 4 (No Semi-Separating Equilibria when 1− cL < −v). Assume 1− cL < −v. Then:
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1. There is no equilibrium where the defender of type L always signals sL and a defender of type H
randomizes between signaling sL and sH and the attacker randomizes with probability βL after receiving
sL and βH after receiving sH and βL 6= βH .

2. There is no equilibrium where the defender of type H always signals sH and a defender of type L
randomizes between signaling sL and sH and the attacker randomized with probability βL after receiving
sL and βH after receiving sH and βL 6= βH .

Proposition 4 says that if an attacker of type L has relatively high ability to punish (relatively high
value of cL), then there is no equilibrium in which the defender truthfully signals when it is one type and
randomizes its signal when it is another type. While this proposition, in isolation is a “negative result,” it
is useful as context for the following result, established in proposition 5.

Proposition 5 (Semi-Separating Equilibrium with Low Punishment Power). Assume

1. 1− cL > −v,

2. π1cL − π2v > 1,

3. π2 < π1rL + π2w < 1.

4. rL + w > 1

5. γ
1−γ <

cL−v−1
1−cH+v

6. w(π1rL + π2w − π2) < (rL + w − 1)(π1rL + π2w)

Then there exists an equilibrium where:

• A defender of type H always signals sH and always retaliates.

• A defender of type L signals sH with probability αL = γ
1−γ

1−cH+v
cL−v−1 . After signaling sH , the defender

always retaliates. After signaling sL, the defender retaliates with probability ρ(o1, sL, L) = 1
π1cL−π2v

after observing o1 and never retaliates after observing o2

• An attacker that receives signal sH attacks with probability βH = w(π1rL+π2w−π2)
(rL+w−1)(π1rL+π2w) .

• An attacker that receives signal L attacks with probability βL = π2w
π1rL+π2w

.

To understand proposition 5 it is beneficial to understand the parameter regime in which the equilibrium
exists. The first condition (1 − cL > −v) says that an attacker’s best response to a defender of type L
that always retaliates is to always attack. Intuitively, this means that a defender of type L has a relatively
low capability to deliver an impactful correct retaliation. Condition 2 says that if the attacker knew with
certainty that the defender were type L, there is an equilibrium in the induced attribution game where the
attacker randomizes with probability π2w

π1rL+π2w
. This condition together with condition 3 establishes that

the defender has a relatively high attribution capability (high values of π1 and low values of π2 expand the
parameter region). Condition 4 says that a defender of type L has enough ability to punish that as the
attacker attacks more, the utility of the defender from always punishing increases. Condition 5 says that
the defender is not type H too often. Finally, condition 6 says that there is a wide enough range of attacker
randomization probabilities where the defender’s best response is to always retaliate. In summary, for the
semi-separating equilibrium to exist, the defender must have relatively high attribution capability, not have
a high retaliatory capability too often and that the defender of type L does not deliver a relatively strong
punishment when it successfully retaliates.

To see how such an equilibrium exists, consider figure 7. The two values of β that are labeled are the
attacker randomization probabilities in the semi-separating equilibrium. When the attacker attacks with
probability βL, the defender of type L is indifferent between never retaliating and retaliating after o1. This
is where the purple line intersects the dotted blue line. When the attacker attacks with probability βH , the
type L defender’s best response is to always retaliate. The horizontal green line illustrates that a defender of
type L is indifferent between these two outcomes and thus is willing to randomize its signal when it is type
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βL = π2w
π1rL+π2w

βH = w(π1rL+π2w−π2)
(rL+w−1)(π1rL+π2w)

βL = −π2w
π1rL+π2w

−π2w

−w

β

Ud

Never Retaliate: Ud = −β
Retaliate after o1 only: Ud = −π2w + β(π1r + π2w − 1)

Always Retaliate: Ud = −w + β(r + w − 1)

Figure 7: Semi-Separating Equilibrium

L. A defender of type H receives a higher utility when the attacker attacks with probability βH and always
retaliates (solid red line) than when the attacker attacks with probability βL and the attacker retaliates after
o1 only (dotted blue line). Therefore, the defender of type H would always signal sH , as indicated in the
semi-separating equilibrium.

3.2.4 Gains from Signaling

Finally we investigate whether it is possible for the defender to gain from signaling. To carry out such
an analysis, we say that there is a gain from signaling if for a fixed set of parameters, the semi-separating
equilibrium exists and the defender’s expected utility in the semi-separating equilibrium is higher than it’s
expected utility in a pooling equilibrium that exists simultaneously. Of course, this ignores any notion of
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Parameter Value
π1 .8
π2 .45
cH 4
cL 3
v 2.6
γ .4
rH .9
rL .65
w .8

Table 3: Parameter values where there are gains from signaling through deterrence

equilibrium selection and how the players might arrive at such an equilibrium, which is an interesting future
endeavor. We also say that it is possible from the defender to gain with signaling through a deterrence
effect if the defender’s expected utility under the semi-separating equilibrium is higher than in the pooling
equilibrium and the attacker’s attack probability is lower in the semi-separating equilibrium than in the
pooling equilibrium.

First, we illustrate that there exist parameter regimes where the defender can gain by deterring the
attacker. Consider the parameter values in table 3.6 In this parameter regime, the conditions in proposition
5 are satisfied and the semi-separating equilibrium exists. At this equilibrium, the attacker attacks with
probability .715 and the defender’s expected utility before realizing its type is −.298. At these parameter
values, the equilibrium in row 2 of table 2 also exists. At this equilibrium, the attacker attacks with
probability .772 and the defender earns an expected utility of −.36.

Figure 8 illustrates the deterrent effect of the semi-separating equilibrium. In the pooling equilibrium,

the attacker randomizes with probability βp = (1−π2)w
(1−π1)rL+(1−π2)w

. In the semi-separating equilibrium, the

attacker will randomizes either at probability βH or βL. While βH is slightly higher than βp, βL is sufficiently
low such that on average, the attacker attacks less and the defender’s expected utility increases by reducing
the probability in which the attacker attacks. Since the defender of type L has a higher expected utility at
βH and βL then at βp, the defender gains with signaling through a deterrence effect.

After establishing that the defender can benefit through signaling by deterring an attacker, we now
present our final result that shows that a defender can benefit through signaling by inducing the attacker
to attack more. Consider the parameter set in table 4. In this parameter regime, the semi-separating
equilibrium exists and the attacker attacks with probability .729 and the defender earns an expected payoff
of −.249. At those parameter values, the equilibrium in row 1 of table 2 also exists. This equilibrium is the
pooling equilibrium in which the attacker randomizes its attack with the lowest probability. At that pooling
equilibrium, the attacker attacks with probability .260 and the defender’s expected payoff is −.260. This
means that the defender can increase its expected utility from signaling by inducing the attacker to attack
more.

There are two reasons for this counter-intuitive result. The first reason has to do with the trade-off
the defender faces between an incorrect retaliation and an undetected attack. If the cost to an incorrect
retaliation is relatively high, then the defender has little incentive to retaliate because it risks the possibility
of being incorrect. However, if the attacker were to attack with a higher probability, then the defender would
incorrectly retaliate less often. If the cost of an incorrect retaliation is high enough, then the defender would
benefit from being attacked slightly more but incorrectly retaliating less often.

The second effect is due to the defender inducing the attacker to attack against a defender of type H
where the defender gains the most from a correct retaliation. Consider figure 9. The figure illustrates the
pooling equilibrium at βp and the semi-separating equilibrium where the attacker randomizes either at βL
and βH , depending on the signal it gets from the defender. The defender of type L’s expected utility when
the attacker attack with probability βp is higher than if the attacker were to attack with probability βL or
βH , indicating that a defender of type L is worse off when the attacker attacks more. However, the expected

6The intuition that we demonstrate in this section holds for a set of parameters of positive measure. We only select specific
parameter values to highlight the main insights.
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βL = π2w
π1rL+π2w

βp = (1−π2)w
(1−π1)rL+(1−π2)w

βH = w(π1rL+π2w−π2)
(rL+w−1)(π1rL+π2w)

−π2w

−w

β

Ud

Never Retaliate: Ud = −β
Retaliate after o1 only: Ud = −π2w + β(π1r + π2w − 1)

Always Retaliate: Ud = −w + β(r + w − 1)

Figure 8: The attack probabilities for the pooling and semi-separating equilibrium

utility of an attacker of type H is higher at βH than at βp. Therefore, if the defender can randomize its
signal such that the benefit it receives from retaliating when it is type H outweighs the loss it would incur
from a higher attack probability when the defender is type L, then the defender stands to gain from a higher
attack probability. In other words, the defender can gain when the attacker attacks more as long as the
increased attack probability mostly occurs when the defender is type H and can more effectively retaliate.

As a final illustration of the equilibrium and its properties, figure 10 shows the parameter region where
there are gains to be made from signaling by inducing the attacker to attack more. This region is defined by
the conditions in proposition 5 and the region where 1

γ(π1cH−π2v)
is a proper probability. Generally speaking,

the lower right corner of the plot is where attribution capabilities are the highest (high value of π1 and low
value of π2. The figure shows that as the cost of an incorrect retaliation increases, the defender’s attribution
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Parameter Value
π1 .95
π2 .5
cH 5
cL 3
v 3
γ .32
rH .9
rL .7
w .6

Table 4: Parameter values where there are gains from signaling through deterrence

ability must increase in order to support an equilibrium where there are gains from signaling though an
anti-deterrence effect.

4 Conclusion — Towards a Cyber Deterrence Policy

This work responds to an active conversation on the strategy of cyber deterrence where calls for a cyber
deterrence policy have been met with debate on the desirability and feasibility of deterring aggression in
cyberspace. The challenges emanating from the cyber domain on conflict are a marked departure from the
challenges of the nuclear domain. Thus, while the fundamental building blocks of deterrence outlined by
Schelling persist, the lessons of nuclear deterrence may not. We offer a model with two players, imperfect
information, and signaling to analyze the viability of deterrence in domains with imperfect attribution and
signaling. In addition to highlighting the significant obstacles to cyber deterrence, our findings elucidate
unique opportunities for deterrence and the curious value of anti-deterrence.

Unfortunately, complete deterrence will not come easy for the foreseeable future; with imperfect attribu-
tion, there are no equilibria in which the attacker will never attack and therefore we find complete deterrence
unlikely. However, that does not render some deterrence unfeasible. To the contrary, when a defender is
able to signal its capability, it may partially deter an attacker from launching an attack. Specifically, we
show that there are semi-separating equilibria in which the attacker attacks with a lower probability than
in a game without signaling and the defender receives the benefits from the reduced attacks. Thus, while
signaling does not bring the attack probability to zero, it can reduce the chances of an attack. Signaling,
therefore, is a key feature of a deterrence policy worthy of further exploration.

Our findings also point to a curious concept of anti-deterrence that raises the question: is deterrence the
only option? In a world without perfect information and verifiable signals, our results suggest that anti-
deterrence may be a means of increasing the defenders well-being while also welcoming a higher probability
of attack. We show that in some cases, a defender would be willing to take on a higher probability of being
attacked if 1) the higher probability of attack reduces the probability (and therefore costs) of an incorrect
retaliation and 2) the increase in the probability of attack is more heavily weighted to when the defender is
most able to respond to attack and not when it cannot effectively respond.

The conversation on cyber deterrence is ripe for further debate. Additional work could enhance the
present analysis by endogenizing the defenders capability in which the defender undertakes costly investment
to improve its, retaliatory, detection and attribution abilities. Furthermore, while we introduce costless
signaling to the discussion on cyber deterrence, additional work should consider costly signaling. Specifically,
a fruitful extension would be to consider the single use nature of cyber weapons and whether a defender with
a stockpile of single use weapons can add credibility to its signal by strategically using some of its weapons
as merely a signal.
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A Appendix

FOR ONLINE PUBLICATION

• Proposition 1 To prove proposition 1, we begin with two lemmas that establish there are no pure
strategy equilibria and then prove the proposition by looking for mixed strategy equilibria.

Lemma 1 (No Pure Strategy Equilibrium for the Attacker in the Attribution Game). If 1 − c < −v
there is no equilibrium in the attribution game where the attacker plays a pure strategy.

Proof. Suppose the attacker’s pure strategy is to never attack. The defender’s best response against
such a strategy is to never retaliate. However, the attacker’s best response to the defender never
retaliating is to always attack. Therefore, there is no pure strategy equilibrium where the attacker never
attacks. Now, suppose the attacker’s pure strategy is to always attack. In this case, the defender’s best
response is to always retaliate. However, the attacker’s best response to the defender always retaliating
is to never attack (since by assumption, the total payoff to attacking and being correctly retaliated
against, 1− c, is less than the total payoff of being incorrectly retaliated against −v.) Therefore, there
is no pure strategy equilibrium where the attacker always attacks.

Lemma 2 (No Pure Strategy Equilibrium for the Defender in the Attribution Game). If 1− c < −v
there is no equilibrium in the attribution game where the defender plays a pure strategy.

Proof. Suppose the defender’s pure strategy is to always retaliate. Then the attacker’s best response
would be to never attack and thus the defender’s best response would be to never retaliate. Therefore,
always retaliating cannot be part of an equilibrium. A parallel argument shows that never retaliating
cannot be part of of equilibrium. The only other pure strategy for the defender in the attribution game
is to always retaliate after receiving signal o1 and never retaliate after signal o2 (since π1 > π2, the
strategy always retaliate after o2 and never retaliate after o1 is strictly dominated). If the defender
adopts this strategy, the attacker’s expected utility from attacking and not attacking is given by:

Ua(A, (R,DR)) = Pr(o1|A)(1− c) + Pr(o2|A) = π1(1− c) + (1− π1)

Ua(NA, (R,DR)) = Pr(o1|NA)(−v) + Pr(o2|NA)× 0 = π2v

where Ua(X, (Y, Z)) is the expected utility of the attacker for choosing action X where the defender
chooses (the probability of) action Y after observing o1 and (the probability of action) Z after observing
o2. These expected utilities implies that if 1 − π1c − π2v > 0, then the attacker would always attack
and if 1 − π1c − π2v < 0 then attacker would never attack both of which by lemma 1 cannot be part
of an equilibrium (Recall that by assumption 1− π1c− π2v 6= 0).

Lemmas 1 and 2 establish that there cannot be an equilibrium in which either the attacker or the
defender play pure strategies. Therefore, we prove proposition 1 by searching for mixed strategy
equilibria only.

Proof of Proposition 1. Suppose the attacker randomizes with probability β. Then equilibrium de-
fender beliefs are determined as follows:

Pr(A|o1) =
Pr(o1|A)Pr(A)

Pr(o1)
=

π1β

π1β + π2(1− β)

Pr(DA|o1) =
Pr(o1|A)Pr(DA)

Pr(o1)
=

π2(1− β)

π1β + π2(1− β)

Pr(A|o2) =
Pr(o2|A)Pr(A)

Pr(o2)
=

(1− π1)β

(1− π1)β + (1− π2)(1− β)

Pr(DA|o2) =
Pr(o2|A)Pr(DA)

Pr(o2)
=

(1− π2)(1− β)

(1− π1)β + (1− π2)(1− β)
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With these probabilities, it is possible to write the defender’s expected utility from retaliating and not
retaliating for each of its observations They are given by:

Ud(R, β; o1) = Pr(A|o1)(r − 1)− Pr(DA|o1)w

=
π1β

π1β + π2(1− β)
(r − 1)− π2(1− β)

π1β + π2(1− β)
w

Ud(DR, β; o1) = −Pr(A|o1)− 0× Pr(DA|o1)

= − π1β

π1β + π2(1− β)

Ud(R, β; o2) = Pr(A|o2)(r − 1)− Pr(DA|o2)w

=
(1− π1)β

(1− π1)β + (1− π2)(1− β)
(r − 1)− (1− π2)(1− β)

(1− π1)β + (1− π2)(1− β)
w

Ud(DR, βH ; o2) = −Pr(A|o2)− 0× Pr(DA|o2)

= − (1− π1)β

(1− π1)β + (1− π2)(1− β)

where Ud(X,β; o) is the expected utility of the defender by choosing action X given the attacker
randomizes with probability β and the defender observed observation o. Since there is no equilibrium
where the defender plays a pure strategy and must randomize, it must be indifferent at (at least) one
of its information sets.

After observing o1 the defender is indifferent between retaliating and not retaliating when:

π1β

π2(1− β)
=
w

r

=⇒ β =
π2w

π1r + π2w
(1)

where it is optimal for the defender to retaliate if β is greater than the right hand side (RHS) of
equation 1 and not retaliate if β is less than the RHS.

After observing o2, the defender is indifferent between retaliating and not retaliating when

(1− π1)β

(1− π2)(1− β)
=
w

r

=⇒ β =
(1− π2)w

(1− π1)r + (1− π2)w
(2)

where it is optimal for the defender to retaliate if β is greater than the right hand side (RHS) of
equation 2 and not retaliate if β is less than the RHS. Since π1 > π2 by assumption, the RHS of 1 is
less than the RHS of 2.

Since the defender must be indifferent at at least one of its information sets, equations 1 and 2 give
the only two possible values of equilibrium attacker randomization probability. We will now establish
the sufficient conditions for the values in equations 1 and 2 to be part of a PBE.

Case 1: β = π2w
π1r+π2w

Suppose the attacker randomizes with probability β = π2w
π1r+π2w

, then the
defender will never retaliate after receiving o2 and is indifferent after observing o1, and therefore is
willing to randomize with probability ρ after observing o1. The necessary and sufficient condition for
the attacker to be willing to randomize is if its expected utility from attacking is equal to its expected
utility from not attacking. This is satisfied when:

Ua(A, (ρ,DR)) = Ua(NA, (ρ,DR))

=⇒ Pr(o1|A)Pr(R|o1)(1− c) + Pr(o1|A)Pr(NR|o1) + Pr(o2|A) = Pr(o1|A)Pr(R|o1)(−v)

=⇒ π1ρ(1− c) + π1(1− ρ) + 1− π1 = −π2ρv

=⇒ ρ =
1

π1c− π2v
. (3)
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Since ρ is a probability, it only takes on the values between 0 and 1, which holds only when 1− π1c+
π2v ≤ 0. Therefore, if 1−π1c+π2v ≤ 0, then there is a Nash equilibrium where the attacker randomizes
with probability β = π2w

π1r+π2w
= β∗

1 and the defender never retaliates after observing o2 and randomizes

with probability ρ = 1
π1c−π2v

= ρ∗1 after observing o1. This proves item 1 of the proposition.

Case 2: β = (1−π2)w
(1−π1)r+(1−π2)w

Suppose the attacker randomizes with probability β = (1−π2)w
(1−π1)r+(1−π2)w

,

then the defender will always retaliate after receiving o1 and is willing tor randomize with probability
ρ after observing o2. The necessary and sufficient condition for the attacker to be willing to randomize
is if its expected utility from attacking is equal to its expected utility from not attacking. This is
satisfied when:

Ua(A, (R, ρ)) = Ua(NA, (R, ρ))

=⇒ Pr(o1|A)(1− c) + Pr(o2|A)ρ(1− c) + Pr(o2|A)(1− ρ) = Pr(o1|NA)(−v) + Pr(o2|NA)ρ(−v)

=⇒ π1(1− c) + (1− π1)ρ(1− c) + (1− π1)(1− ρ) = −v(π2 + (1− π2)ρ)

=⇒ ρ =
1− π1c+ π2v

(1− π1)c− (1− π2)v
. (4)

Since by assumption c− v > 1 the numerator is less than the denominator and thus the only way that
ρ represents a proper probability is if 1− π1c+ π2v > 0. Therefore, if 1− π1c+ π2v > 0, then there is

a Nash equilibrium where the attacker randomizes with probability β = (1−π2)w
(1−π1)r+(1−π2)w

= β∗
2 and the

defender always retaliates after observing o1 and randomizes with probability ρ = 1−π1c+π2v
(1−π1)c−(1−π2)v

= ρ∗2
after observing o2. This proves item 2 of the proposition.

• Proof of Corollary 1. As shown in the proof of proposition 1, there are only two possible values of β
that can be part of a Nash equilibrium. For each value of β, there is only one mixed strategy for the
defender that would make the attacker indifferent and thus willing to randomize. This suggests that
there may be two equilibria. However, under one value of β the existence of a defender’s equilibrium
mixed strategy relies on 1−π1c+π2v > 0 where for the other value of β, the existence of the defender’s
mixed strategy relies on 1 − π1c + π2v < 0. Since both conditions can not hold simultaneously, there
is a unique Nash equilibrium determined by the sign of 1− π1c+ π2v.

• Proof of Proposition 2. If the defender truthfully signals its capability, then Bayes rule dictates that
the attacker assigns probability 1 to the defender’s true capability and 0 otherwise. Therefore, after
the truthful signal, a separating equilibrium would have the players play the equilibrium profile of the
attribution game where the parameters are determined by the defender’s true type and the payoffs
would be as in table 1 where the values of r and c are given according to the defender’s type. This
proof shows that for for all possible values of 1−π1ck+π2v where k ∈ {H,L}, the defender can improve
its expected utility by lying to the attacker about its type.

Formally, let β∗
L be the attacker’s equilibrium probability of attacking when the players play the

attribution game and the defender is type L and let β∗
H be the attacker’s equilibrium probability of

attacking when they play the attribution game and the defender is type H.

– Case 1: 1−π1cH+π2v < 0 and 1−π1cL+π2v < 0. Consider when the defender truthfully signals
sL, indicating that it has a low capability. In this case, the attacker’s equilibrium probability in
the attribution game is β∗

L = π2w
π1rL+π2w

and the defender’s expected utility is −β∗
L. If instead

of signaling sL the defender signaled sH , the attacker would randomize with probability β∗
H =

π2w
π1rH+π2w

and the defender’s payoff would be−β∗
H > −β∗

L. Therefore the defender has an incentive
to signal it is type H when it is truly type L and thus there is not a separating equilibrium when
1− π1cH + π2v < 0 and 1− π1cL + π2v < 0

– Case 2: 1 − π1cH + π2v > 0 and 1 − π1cL + π2v > 0 In this regime, if the defender were to

signal its true capability, the attacker would attack with probability β∗
k = (1−π2)w

(1−π1)rk+(1−π2)w
where

k is either H or L depending on the defenders signal. The defender of type k has an expected
utility of β∗

k(r − 1) − (1 − β∗
k)w = β∗

k(rk − 1 + w) − w. If (rH − 1 + w) > 0, then the defender’s
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utility is increasing in the attack probability. Therefore when the defender is type H it would
prefer that the attacker attack with a higher probability thus would signal that it is type L and
induce the attacker to attack with probability β∗

L > β∗
H . Therefore, there cannot be a separating

equilibrium if (rH − 1 + w) > 0. Now suppose (rH − 1 + w) ≤ 0. Then it must be the case that
(rL−1+w) < 0, which implies that when the defender is type L, its expected utility is decreasing
in the attack probability. This means that when the defender is truly type L it would prefer to
signal that it was type H so that the attacker randomizes with probability β∗

H < β∗
L. As a result,

there cannot be a separating equilibrium when (rH − 1 + w) ≤ 0.

– Case 3: 1 − π1cH + π2v < 0 and 1 − π1cL + π2v > 0 In this regime, if the defender is type H
and signals such, the attacker randomizes with probability β∗

H = π2w
π1rH+π2w

and the defender’s
expected utility when it is type H is −β∗

H . If the defender is type L and it signals such, the

attacker randomizes with probability β∗
L = (1−π2)w

(1−π1)rL+(1−π2)w
and the defender earns an expected

utility of βL ∗ (π1rL + π2w− 1)− π2w (which by indifference is the same as β∗
L(rL − 1 +w)−w).

Since π1 > π2 and rH > rL, it can be shown that β∗
L > β∗

H . Consider the defender’s deviation
of signaling that it is type L when it is actually type H and changing its strategy to retaliating
after o1 and not retaliating after o2. In this case, the defender’s utility is given by:

Ud((R,DR), β∗
L) = π1β

∗
L(rH − 1)− (1− π1)β∗

L − (1− β∗
L)π2v (5)

where Ud((A,B), C) is the defender’s expected utility from playing A after o1 and B after o2
when the attacker randomizes with probability C. For this deviation to not be profitable for the
defender it must be that:

Ud((DR,DR), β∗
H) ≥ Ud((R,DR), β∗

L)

−β∗
H ≥ π1β

∗
L(rH − 1)− (1− π1)β∗

L − (1− β∗
L)π2v

−β∗
H ≥ β∗

Lπ1rH − β∗
L − π2w + βLπ2w

−β∗
H ≥ β∗

Lπ1rH − β∗
L − β∗

H(π1rH + π2w) + βLπ2w

β∗
H(π2w + π1rH − 1) ≥ β∗

L(π2w + π1rH − 1). (6)

Since β∗
H < β∗

L the inequality in equation 6 only holds if π2w+π1rH−1 ≤ 0. So if π2w+π1rH−1 >
0, then the deviation is profitable and there is no incentive for the defender to truthfully signal
its type. What remains to be shown is that the defender does not have an incentive to truthfully
signal its type when π2w+π1rH−1 > 0. To do this, consider the defender’s deviation of signaling
it is type H when it is actually type L and retaliating after o1 and not retaliating after o2. Under
this deviation, the defender’s expected utility is

Ud((R,DR), β∗
H) = β∗

H(π1rL + π2w − 1)− π2w (7)

For this deviation to not be profitable for the defender it must be that:

Ud((R,R), β∗
L) ≥ Ud((R,R), β∗

H)

β∗
L(π1rL − 1 + π2w)− π2w ≥ β∗

H(π1rL − 1 + π2w)− π2w. (8)

Since β∗
L > β∗

H , the only way for the inequality in equation 8 to hold is if π1rL − 1 + π2w ≥ 0.
However, if π1rL − 1 + π2w ≥ 0 then π1rH − 1 + π2w ≥ 0 since rH > rL. But from the first part
of case 3, if π1rH − 1 + π2w ≥ 0, then the defender would have an incentive to deviate when it
is type L. Therefore, when π1rH − 1 + π2w ≥ 0, the defender has an incentive to deviate from
truthful signaling and when π1rH − 1 + π2w ≤ 0, the defender has an incentive to deviate from
truthful signaling. Ignoring the measure 0 case where π1rH − 1 + π2w = 0, the defender always
has an incentive to deviate from truthful signaling.

All three cases cover all possible parameter values and illustrate the for all values of the parameters,
there is always a profitable deviation from truthful signaling for the defender and thus there is no
separating equilibrium.
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• Proof of Proposition 3. In this case, if the attacker knows the defender is type L, then it is always
a best response for the attacker to attack. As a result, it is always the defender’s best response to
retaliate when it truthfully signals it is type L. To show this cannot be an equilibrium, consider the
following two cases.:

– Case 1: Suppose π1rH + π2w − 1 > 0. Under a separating equilibrium, when the defender
signals it is type L, the attacker attacks with probability 1. Also, when the defender is type
H and truthfully signals its type, its expected utility is −βH when 1 − π1cH + π2v ≤ 0 and
βH(rH + w − 1)− w when 1− π1cH + π2v > 0. Consider each of the two cases separately:

∗ Suppose 1−π1cH+π2v > 0. Since by assumption π1rH+π2w−1 > 0, then rH+w−1 > 0 and
thus the attacker’s expected utility is increasing in βH when 1− π1cH + π2v > 0. Therefore,
if 1 − π1cH + π2v > 0 and the defender is type H, it would be better off signaling it is type
L and thus there cannot be a separating equilibrium in which it truthfully signals its type.

∗ Suppose 1 − π1cH + π2v < 0. Then when the defender is type H and truthfully signals its
type, it’s expected utility is −β∗

H = −π2w
π1rH−π2w

. If it were to instead switch its strategy by
signaling that it is type L and always retaliating, it’s expected utility is rH − 1. For the
defender to not have an incentive to make this switch it must be that:

−π2w
π1rH − π2w

≥ rH − 1

→ 0 ≥ rH(π1rH + π2w − π1) (9)

However by assumption, π1rH +π2w− 1 > 0 so it is impossible for the inequality in equation
9 to hold and this there cannot be a separating equilibrium.

– Case 2: Suppose π1rH + π2w − 1 < 0. Again, there are two sub-cases:

∗ Suppose rL + w − 1 < 0. The defender’s expected utility by truthfully signaling when it is
type L is rL−1. If instead it signaled it was type H and always retaliated, its expected utility
would be β∗

H(rL +w − 1)−w. For it to not gain anything from such a deviation it must be:

rL − 1 ≥ β∗
H(rL + w − 1)− w

→ 1 ≤ β∗
H (10)

Since β∗
H is a probability less than 1, the inequality in equation 10 cannot hold and therefore

there cannot be a separating equilibrium.

∗ Suppose rL+w−1 > 0. If the defender signals that it is type L when it is type H and always
retaliates, it will earn rH − 1. If it signals it is type L when it is truly type L, it earns rL− 1.
If 1− π1cH + π2v < 0, then when the defender signals it is type H, the attacker attacks with
probability −β∗

H = −π2w
π1rH−π2w

. Two possible deviations the defender can make is 1) when L
signal that it is type H and never retaliate and 2) when H signal that it is type L and always
retaliate. For neither of these deviations to be profitable it must be:

rH − 1 < β∗
H

rL − 1 > β∗
H

Since rH > rL, it is impossible for both conditions to hold simultaneously. Finally, If 1 −
π1cH + π2v > 0, then when the defender signals it is type H, the attacker attacks with
probability −β∗

H = −π2w
π1rH−π2w

and the defender earns an expected utility of β∗
H(π1rH + π2v−

1)−w. If instead, the defender signaled it was type L when it is type H, and always retaliate
it would earn rH −1. For there to be no incentive for the defender to deviate it must be that:

rH − 1 < β∗
H(π1rH + π2v − 1)− w

→ rH − 1 + w

π1rH + π2v − 1
> β∗

H (11)

Since by assumption rH − 1 + w > 0 > π1rH + π2v − 1, the left hand side of equation 11 is
negative. Since β∗

H is a proper probability, such an equality can never be satisfied and thus
the defender would have an incentive to deviate.
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• Proof of proposition 4. First, recall the equilibrium probabilities from the attribution game and label
them as:

βH1 =
π2w

π1rH + π2w

βH2 =
(1− π2)w

(1− π1)rH + (1− π2)w

βL1 =
π2w

π1rL + π2w

βL2 =
(1− π2)w

(1− π1)rL + (1− π2)w

(12)

Since π1 > π2 and rH > rL, it can be shown that βH1 < βL1 < βH2 < βL2. By the same argument as
in the attribution game, any equilibrium must have βH1 < βH < βL2 and βH1 < βL < βL2 The reason
is that if any of the attacker’s randomization probabilities are outside these bounds, the defender’s best
response, regardless of its type,is to either always retaliate or never retaliate, which cannot be part of
an equilibrium (because then the attacker would no longer be willing to randomize). Given this fact,
we will now prove each claim in the proposition.

– Proof of Part 1: Under the strategy profile described in part 1, Bayes rule dictates that when
the attacker receives signal sH , it knows with probability 1 that the defender is type H. Therefore,
when the attacker receives signal sH , any equilibrium must have the players play the attribution
game and the attacker attacks with probability βH = βH1 or βH = βH2, depending on the sign
of 1 − π1cH + π2v. For the defender to be willing to randomize between signaling sL and sH , it
must be indifferent between sending the two signals. We examine the cases separately.

∗ Suppose βH = βH2. When the defender signals sH , it is indifferent between retaliating after
o1 only and always retaliating. Thus, it’s expected utility is βH(π1rH + π2w − 1) − π2w =
βH(rH + w − 1) − w. Let βL be the probability the attacker attacks when it receives signal
sL.

· Suppose βL < βH . If π1rH + π2w − 1 < 0, then when the defender of type H signals sL
and only attacks after o1, it earns βL(π1rH + π2w − 1) − π2w which is strictly greater
than its expected utility from signaling sH because βL < βH and π1rH + π2w− 1 < 0 by
assumption. Therefore, the attacker would not be willing to randomize between signals
when it is type H. If π1rH +π2w−1 > 0, then the attacker would not be willing to signal
sL and only attack after o1 because βL < βH , and the payoff for only attacking after o1 is
increasing in β. Therefore, the only way the defender can be indifferent between signaling
sH and sL is if βL is such that the defender’s best response is to never retaliates after
signaling sL. This condition is given by

−βL = βH(π1rH + π2w − 1)− π2w
−βL = βH(π1rH + π2w − 1)− βH1(π1rH + π2w)

βH − βL
βH − βH1

= π1rH + π2w (13)

For the condition in equation 13 to hold, it must be that βL < βH1 since by assumption
π1rH + π2w > 1. However, by the argument above, there is no equilibrium in which the
attacker randomizes with a probability βL < βH1 so there cannot be an equilibrium with
βL < βH .

· Suppose βL > βH . This means that when the defender of type H signals sL and the
attacker randomizes with probability βL, the defender’s best response is to always retali-
ate. This implies that for all values of β such that βH < β < βL, the defender’s expected

27



Working Paper A APPENDIX

utility is either strictly increasing or strictly decreasing in β, depending on the sign of
rH + w − 1. Due to strict monotonicity of the defender’s utility with respect to β, it
cannot be indifferent between signaling βH and βL.

Since there cannot be an equilibrium with βH = βH2 and βL < βH or βL > βH , there cannot
be an equilibrium with βH = βH2.

∗ Suppose βH = βH1. In this case, the defender of typeH is indifferent between never retaliating
and retaliating afer o1 only and earns an expected utility of −βH = βH(π1rH+π2w−1)−π2w.
By the argument above βL cannot be less than βH1. Therefore, suppose βL > βH . If
π1rH + π2w− 1 > 0, then the defender’s expected utility of signaling sL and only retaliating
after o1 is βL(π1rH + π2w − 1) − π2w which is greater than it’s expected utility of after
signaling sH . Therefore, the defender of type H would not be willing to randomize between
signaling sL and sH . If π1rH + π2w − 1 < 0, the only way the defender can be indifferent
between signaling sH and sL is if it always retaliates after signaling sL. This implies

−βH = βH(π1rH + π2w − 1)− π2w = βL(rH + w − 1) (14)

where the first equality comes from the fact that at βH1 the attacker must be indifferent
between never retaliating and retaliating after o1 only. Now consider a defender of type L that
always signals it is type L. In this case, it’s utility is either −βL, βL(π1rL + π2w − 1)− π2w
or βL(rL + v − 1), depending on which of its strategies are optimal at βL. If a defender
of type L instead signaled sH and never retaliated, its expected utility would be −βH =
βH(π1rH + π2w − 1) − π2w = βL(rH + v − 1). The following inequalities show that this
regardless of which one of the defender’s strategies is optimal at βL, there exists a profitable
deviation where the defender of type L signals sH and never retaliates:

−βL < −βH ( By assumption)

βL(rL + w − 1)− w < βL(rH + w − 1) ( Because rH > rL )

βL(π1rL + π2w − 1)− π2w < βH(π1rH + π2w − 1)− π2w

The last line follows because rH > rL and π1rH +π2w− 1 < 0. This shows that there cannot
be a PBE where βH = βH1

Since there cannot be an equilibrium where the attacker randomizes with either βH1 or βH2 after
observing sH , there cannot be a PBE where a defender of type L always signals sL and a defender
of type H randomizes between signaling sL and sH .

– Proof of Part 2: Under the strategy profile described in part 2, Bayes rule dictates that when
the attacker receives signal sL, it knows with probability 1 that the defender is type L. Therefore,
when the attacker receives signal sL, any equilibrium must have the players play the attribution
game and the attacker attacks with probability βL = βL1 or βL = βL2, depending on the sign of
1−π1cL+π2w. For the defender to be willing to randomize between signaling sL and sH , it must
be indifferent between sending the two signals. We examine the cases separately.

∗ Suppose βL = βL2. In this case, the defender of type L is indifferent between retaliating after
o1 only and always retaliating and earns βL(π1rL + π2w − 1) − π2w = βL(rL + w − 1) − w.
There cannot be an equilibrium where βH > βL because then the defender’s best response
would be to always retaliate regardless of its type. Therefore, it is sufficient to only consider
the case where βH < βL. If π1rL + π2w− 1 < 0, then the defender of type L has a profitable
deviation to signal it is type H and only retaliate after o1 and earn βH(π1rL+π2w−1)−π2w
which is greater than βL(π1rL+π2w−1)−π2w. Now suppose π1rL+π2w−1 > 0. Since there
is no equilibrium where the attacker ever randomizes with a probability β < βH1 it must be
that βH1 < βH < βL. This means that the attacker’s best response at βH is either to retaliate
after o1 only or always retaliates. However, since π1rL+π2w−1 > 0 then π1rH +π2w−1 > 0
and rH + π2w − 1 > 0 which means that the expected utility of the defender of type H is
increasing in β and thus a defender of type H would prefer to signal sL. Consequently, there
cannot be an equilibrium where βL = βL2.
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∗ Suppose βL = βL1. In this case, a defender of type L is indifferent between never retaliating
and retaliating after o1 only and earns −βL = βL(π1rL + π2w− 1)− π2w. Suppose βH < βL,
then there defender of type L would not be willing to randomize between sL and sH because
it can signal sH , never retaliate and earn betaH , which is greater than its expected utility
of −βL by signaling sL. Now suppose βH > βL. If π1rL + π2w − 1 > 0, the defender of
type L can earn βH(π1rL + π2w − 1) − π2w when it signals sH and only retaliates after o1.
Since this is higher than its maximum expected utility of βL(π1rL + π2w − 1) − π2w when
it signals sL, a defender of type L would not be willing to randomize its signals. Lastly, if
π1rL + π2w − 1 < 0, the defender can only be indifferent between signaling sH and sL if its
best response is to always retaliate when it is type L and signals sH (because its expected
utility of only retaliating after o1 is strictly monotonic in β). However, if the defender’s of
type L’s best response to an attacker randomizing with probability βH is to always retaliate,
it is also a defender of type H’s best response to always retaliate. Since the defender always
retaliating after a signal cannot be part of an equilibrium, there cannot be an equilibrium
where βH > βL.

Since there cannot be an equilibrium where the attacker randomizes with either βL1 or βL2 after
observing sL, there cannot be an equilibrium where a defender of type H always signals sH and
a defender of type L randomizes between signaling sL and sH .

• Proof of Proposition 5. Begin by considering the attacker. If the attacker receives signal sL, then
Bayes rules necessitate it knows the defender is type L and thus the attacker and defender play the
attribution game. As proposition 1 shows, there is an equilibrium in the attribution game where the
attacker randomizes with probability π2w

π1rL+π2w
and the defender retaliates with probability 1

π1cL−π2v
,

which by assumption 2 is a proper probability. Now consider the attacker that receives signal sH . For
it to be willing to randomize, it must be indifferent between attacking and not attacking. Assuming
the defender retaliates regardless of its type, this condition is given by:

P (H|sH)(1− cH) + P (L|sH)(1− cL) = −v
P (sH |H)P (H)(1− cH)

P (sH |H)P (H) + P (sH |L)P (L)
+

P (sH |L)P (L)(1− cL)

P (sH |H)P (H) + P (sH |L)P (L)
= −v

γ(1− cH)

γ(1− cH) + (1− γ)P (sH |L)
+

γ(1− cL)P (sH |L)

γ(1− cH) + (1− γ)P (sH |L)
= −v

P (sH |L) =
γ

(1− γ)

1− cH + v

cL − v − 1
(15)

By assumption, 1− cH + v and cL− v− 1 are both less than 0, so the second fraction in equation 15 is
positive. By assumption, 5, the entire right hand side of equation 15 is less than 1 and thus a proper
probability.

Now consider the defender. To begin, consider a defender of type L. A necessary condition for the
defender of type L to be willing to randomize between signaling 1) sL and earning a payoff of −π2w

π1rL+π2w
and randomizing between never retaliating and retaliating after o1 only and 2) sH , inducing the attacker
to attack with probability βH , and always retaliating, it must be indifferent between the two signals.
This implies

−π2w
π1rL + π2w

= βH(rL + w − 1)− w

βH =
w(π1rL + π2w − π2)

(rL + w − 1)(π1rL + π2w)
(16)

Since, π1rL + π2w < 1 by assumption, the defender’s expected utility from retaliating after o1 only
is decreasing in β and thus, the defender’s best response at βH is to always retaliate. Therefore,
the defender of type L is indifferent between signaling sH and sL. Finally, consider the defender
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of type H. When the attacker randomizes with probability βH , because it is a defender’s of type
L best response to always retaliate, it must also be a defender of type H’s best response to always
retaliate. The defender’s payoff from always retaliating is βH(rH +w− 1)−w = −βL + βH(rH − rL).
What remains to be shown is that a defender of type H does not have an incentive to signal sL. If
the defender signals sL and always retaliates, its payoff must be less than if it signals sH because
its payoff to always retaliaing is increasing in β. It’s payoff by signaling sL and never retaliating is

−π2w
pi1rL+π2w

= βH(rL+w−1)−w < βH(rH+w−1)−w. Finally, it’s payoff of signaling sL and retaliating

after o1 only is βL(π1(rH − rL) − 1) which is strictly less than −βL + βH(rH − rL). Therefore, the
defender does not have an incentive to change its strategy.

No other semi-separating equilibrium. First, we will show that there is no equilibrium in which the defender
randomizes its signal for each of its types. Then we will show there is no equilibrium in which the defender
randomizes only when it is type H.

For contractiction, suppose there is a a signaling equilibrium where the defender randomizes its signal
for each of its types and induces the attacker to randomize with probability βH and βL and without loss of
generality, assume βH > βL. There is no equilibrium where βL is so low that the attacker of type H would
never retaliate. Therefore, the defender of type H must be indifferent between retaliating after o1 only and
always retaliating. This implies

βL(π1rH + π2w − 1) = π2w = βH(rH + w − 1)− w (17)

of course, this can only happen when (π1rH + π2w − 1) < 0 and (rH + w − 1). For a defender of type L to
be indifferent, there are two cases.

• Consider the case where the defender of type L is indifferent between retaliating only after o1 when the
attacker attacks with probability βL and always retaliating when the attacker attacks with probability
βH . This implies

βL(π1rL + π2w − 1) = π2w = βH(rL + w − 1)− w (18)

However, solving for equations 17 and 18 yields βH = π1βL which violates the fact that betaH > βL.

• Consider the case where the defender of type L is indifferent between never retaliating when the attacker
attacks with probability βL and always retaliating when the attacker attacks with probability betaH .
This implies

−βL = βH(rL + w − 1)− w (19)

Equation 17 and 19 together imply that

βL =
π2w

π1rL + π2w
+ (rH − rL)(βH − π1βL) (20)

However, the soluton to equation 20 yields a value of βL > π2w
π1rL+π2w

, which cannot be part of an
equilibrium because at such a value of βL, the defender would prefer to retaliate after o1.

Now consider the semi-separating strategy where the defender randomizes its signal when it is type H
and always signals sL when it is type L. If the attacker randomizes its signal when it is type H, then
Bayes rule will dictate that when the attacker receives signal sH , it knows the attacker is type H with
certainty; Let βH be the attacker’s randomization probability when it receives signal sH . Since the attacker
knows the defender’s type when the defender signals sH , the players play the attribution game and therefore

the attacker either randomizes with βH = π2w
π1rh+π2w

or βH = (1−π2)w
(1−π1)rH+(1−π2)w

. We consider these cases

separately.

• Suppose βH = π2w
π1rL+π2w

where the defender of type H is indifferent between never retaliating and
retaliating after o1 only. For the defender of type H to be willing to randomize its signal, it must
be that the defender is indifferent between signaling sH and signaling sL, inducing the attacker to
attack with probability βL and always retaliating. However, at such a βL, the defender of type L’s
expected utility for any of it strategies is strictly less than its expected utility from signaling sH and
never retaliating, therefore, the defender would never be willing to signal sL.
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• Suppose βH = (1−π2)w
(1−π1)rH+(1−π2)w

where the defender of type H is indifferent between retaliating after o1
only and always retaliating. For the defender of type H to be willing to randomize its signal, it must be
that the defender is indifferent between signaling sH and signaling sL, inducing the attacker to attack
with probability βL and never retaliating. However, at such a value of βL, the defender of type H or
type L would ever retaliate and thus the attacker wouldn’t be willing to randomize but instead would

attack with probability 1. Therefore, there can’t be an equilibrium in which βH = (1−π2)w
(1−π1)rH+(1−π2)w

.

Finally consider the semi-separating strategy where the defender randomizes its signal when it is type L and
always signals sH when it is type H. If the attacker randomizes its signal when it is type L, then Bayes
rule will dictate that when the attacker receives signal sL, it knows the attacker is type L with certainty.
Let βL be the attacker’s randomization probability when it receives signal sL. Since the attacker knows the
defender’s type when the defender signals sL, the players play the attribution game and therefore the attacker

either randomizes with βL = π2w
π1rL+π2w

or βH = (1−π2)w
(1−π1)rL+(1−π2)w

. Our main proposition showed that there

can be an equilibrium when βL = π2w
π1rL+π2w

so here, we consider the case where βL = (π2−)w
(1−π1)rL+(1−π2)w

. The

only way the defender can be indifferent between the attacker attacking with probability βL and βH is if
π1rL+π2w−1 > 0 and the defender of type L never retaliates at βH < βL. However, since π1rL+π2w−1 > 0,
the attacker of type H’s expected utility is increasing in β and therefore would prefer to signal sL and not
sH .

All of the cases show that there are no other semi-separating equilibria.
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